Mercurial > hg > Members > kono > Proof > category
view system-f.agda @ 445:00cf84846d81
cont..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 14 Oct 2016 19:44:59 +0900 |
parents | c483374f542b |
children | 6b4bd02efd80 |
line wrap: on
line source
{-# OPTIONS --universe-polymorphism #-} open import Level open import Relation.Binary.PropositionalEquality module system-f where Bool : {l : Level} → Set l → Set l Bool {l} = λ(X : Set l) → X → X → X T : {l : Level} (X : Set l) → Bool X T X = λ(x y : X) → x F : {l : Level} (X : Set l) → Bool X F X = λ(x y : X) → y D : {l : Level} → {U : Set l} → U → U → Bool U → U D u v t = t u v lemma04 : {l : Level} { U : Set l} {u v : U} → D {_} {U} u v (T U ) ≡ u lemma04 = refl lemma05 : {l : Level} { U : Set l} {u v : U} → D {_} {U} u v (F U ) ≡ v lemma05 = refl _×_ : {l : Level} → Set l → Set l → Set (suc l) _×_ {l} U V = {X : Set l} → (U → V → X) → X <_,_> : {l : Level} {U V : Set l} → U → V → (U × V) <_,_> {l} {U} {V} u v = λ{X} → λ(x : U → V → X) → x u v π1 : {l : Level} {U V : Set l} → (U × V) → U π1 {l} {U} {V} t = t {U} (λ(x : U) → λ(y : V) → x) π2 : {l : Level} {U V : Set l} → (U × V) → V π2 {l} {U} {V} t = t {V} (λ(x : U) → λ(y : V) → y) lemma06 : {l : Level} {U V : Set l } → {u : U } → {v : V} → π1 ( < u , v > ) ≡ u lemma06 = refl lemma07 : {l : Level} {U V : Set l } → {u : U } → {v : V} → π2 ( < u , v > ) ≡ v lemma07 = refl hoge : {l : Level} {U V : Set l} → U → V → (U × V) hoge u v = < u , v > -- lemma08 : {l : Level} {U V : Set l } → {u : U } → (t : U × V) → < π1 t , π2 t > ≡ t -- lemma08 t = refl -- Emp definision is still wrong... --record Emp {l : Level } : Set (suc l) where -- field -- ε : (U : Set l ) → U -- e1 : {U V : Set l} → (u : U) → (ε (U → V) ) u ≡ ε V -- --open Emp --lemma103 : {l : Level} {U V : Set l} → (u : U) → (t : Emp ) → (ε t (U → V) ) u ≡ ε t V --lemma103 u t = e1 t u Emp : {l : Level } → Set (suc l) Emp {l} = {X : Set l} → X -- ε : {l : Level} {U : Set l} → Emp {l} → U -- ε {l} {U} t = t U -- lemma103 : {l : Level} {U V : Set l} → (u : U) → (t : Emp {l} ) → (ε {l} {U → V} t) u ≡ ε {l} {V} t -- lemma103 u t = refl -- lemma09 : {l : Level} {U : Set l} → (t : Emp ) → ε {l} {U} (ε {_} {Emp} t) ≡ ε {_} {U} t -- lemma09 t = refl -- lemma10 : {l : Level} {U V X : Set l} → (t : Emp ) → U × V -- lemma10 {l} {U} {V} t = ε {suc l} {U × V} t -- lemma100 : {l : Level} {U V X : Set l} → (t : Emp ) → Emp -- lemma100 {l} {U} {V} t = ε {_} {U} t -- lemma101 : {l : Level} {U V : Set l} → (t : Emp ) → π1 (ε {suc l} {U × V} t) ≡ ε {l} {U} t -- lemma101 t = refl -- lemma102 : {l : Level} {U V : Set l} → (t : Emp ) → π2 (ε {_} {U × V} t) ≡ ε {_} {V} t -- lemma102 t = refl _+_ : {l : Level} → Set l → Set l → Set (suc l) _+_ {l} U V = {X : Set l} → ( U → X ) → (V → X) → X ι1 : {l : Level } {U V : Set l} → U → U + V ι1 {l} {U} {V} u = λ{X} → λ(x : U → X) → λ(y : V → X ) → x u ι2 : {l : Level } {U V : Set l} → V → U + V ι2 {l} {U} {V} v = λ{X} → λ(x : U → X) → λ(y : V → X ) → y v δ : {l : Level} { U V R S : Set l } → (R → U) → (S → U) → ( R + S ) → U δ {l} {U} {V} {R} {S} u v t = t {U} (λ(x : R) → u x) ( λ(y : S) → v y) lemma11 : {l : Level} { U V R S : Set _ } → (u : R → U ) (v : S → U ) → (r : R) → δ {l} {U} {V} {R} {S} u v ( ι1 r ) ≡ u r lemma11 u v r = refl lemma12 : {l : Level} { U V R S : Set _ } → (u : R → U ) (v : S → U ) → (s : S) → δ {l} {U} {V} {R} {S} u v ( ι2 s ) ≡ v s lemma12 u v s = refl _××_ : {l : Level} → Set (suc l) → Set l → Set (suc l) _××_ {l} U V = {X : Set l} → (U → V → X) → X <<_,_>> : {l : Level} {U : Set (suc l) } {V : Set l} → U → V → (U ×× V) <<_,_>> {l} {U} {V} u v = λ{X} → λ(x : U → V → X) → x u v Int : {l : Level } ( X : Set l ) → Set l Int X = X → ( X → X ) → X Zero : {l : Level } → { X : Set l } → Int X Zero {l} {X} = λ(x : X ) → λ(y : X → X ) → x S : {l : Level } → { X : Set l } → Int X → Int X S {l} {X} t = λ(x : X) → λ(y : X → X ) → y ( t x y ) n0 : {l : Level} {X : Set l} → Int X n0 = Zero n1 : {l : Level } → { X : Set l } → Int X n1 {_} {X} = λ(x : X ) → λ(y : X → X ) → y x n2 : {l : Level } → { X : Set l } → Int X n2 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y x) n3 : {l : Level } → { X : Set l } → Int X n3 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y (y x)) n4 : {l : Level } → { X : Set l } → Int X n4 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y (y (y x))) lemma13 : {l : Level } → { X : Set l } → S (S (Zero {_} {X})) ≡ n2 lemma13 = refl It : {l : Level} {U : Set l} → U → ( U → U ) → Int U → U It u f t = t u f ItInt : {l : Level} {X : Set l} → Int X → (X → Int X ) → ( Int X → Int X ) → Int X → Int X ItInt {l} {X} u g f t = λ z s → t (u z s) ( λ (w : X) → (f (g w)) z s ) R : {l : Level} { U X : Set l} → U → ( U → Int X → U ) → Int _ → U R {l} {U} {X} u v t = π1 ( It {suc l} {U × Int X} (< u , Zero >) (λ (x : U × Int X) → < v (π1 x) (π2 x) , S (π2 x) > ) t ) -- bad adder which modifies input type add' : {l : Level} {X : Set l} → Int (Int X) → Int X → Int X add' x y = It y S x add : {l : Level} {X : Set l} → Int X → Int X → Int X add x y = λ z s → x (y z s) s add'' : {l : Level} {X : Set l} → Int X → Int X → Int X add'' x y = ItInt y (\w z s -> w )S x lemma22 : {l : Level} {X : Set l} ( x y : Int X ) → add x y ≡ add'' x y lemma22 x y = refl -- bad adder which modifies input type mul' : {l : Level } {X : Set l} → Int X → Int (Int X) → Int X mul' {l} {X} x y = It Zero (add x) y mul : {l : Level } {X : Set l} → Int X → Int X → Int X mul {l} {X} x y = λ z s → x z ( λ w → y w s ) mul'' : {l : Level } {X : Set l} → Int X → Int X → Int X mul'' {l} {X} x y = ItInt Zero (\w z s -> w) (add'' x) y fact : {l : Level} {X : Set l} → Int _ → Int X fact {l} {X} n = R (S Zero) (λ z → λ w → mul z (S w)) n lemma13' : {l : Level} {X : Set l} → fact {l} {X} n4 ≡ mul n4 ( mul n2 n3) lemma13' = refl -- lemma23 : {l : Level} {X : Set l} ( x y : Int X ) → mul x y ≡ mul'' x y -- lemma23 x y = {!!} lemma24 : {l : Level } {X : Set l} → mul {l} {X} n4 n3 ≡ mul'' {l} {X} n3 n4 lemma24 = refl -- lemma14 : {l : Level} {X : Set l} → (x y : Int X) → mul x y ≡ mul y x -- lemma14 x y = It {!!} {!!} {!!} lemma15 : {l : Level} {X : Set l} (x y : Int X) → mul {l} {X} n2 n3 ≡ mul {l} {X} n3 n2 lemma15 x y = refl lemma15' : {l : Level} {X : Set l} (x y : Int X) → mul'' {l} {X} n2 n3 ≡ mul'' {l} {X} n3 n2 lemma15' x y = refl lemma16 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int X → U ) → R u v Zero ≡ u lemma16 u v = refl -- lemma17 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int → U ) → (t : Int ) → R u v (S t) ≡ v ( R u v t ) t -- lemma17 u v t = refl -- postulate lemma17 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int X → U ) → (t : Int X ) → R u v (S t) ≡ v ( R u v t ) t List : {l : Level} (U X : Set l) → Set l List {l} = λ( U X : Set l) → X → ( U → X → X ) → X Nil : {l : Level} {U : Set l} {X : Set l} → List U X Nil {l} {U} {X} = λ(x : X) → λ(y : U → X → X) → x Cons : {l : Level} {U : Set l} {X : Set l} → U → List U X → List U X Cons {l} {U} {X} u t = λ(x : X) → λ(y : U → X → X) → y u (t x y ) l0 : {l : Level} {X X' : Set l} → List (Int X) (X') l0 = Nil l1 : {l : Level} {X X' : Set l} → List (Int X) (X') l1 = Cons n1 Nil l2 : {l : Level} {X X' : Set l} → List (Int X) (X') l2 = Cons n2 l1 l3 : {l : Level} {X X' : Set l} → List (Int X) (X') l3 = Cons n3 l2 -- λ x x₁ y → y x (y x (y x x₁)) l4 : {l : Level} {X X' : Set l} → Int X → List (Int X) (X') l4 x = Cons x (Cons x (Cons x Nil)) ListIt : {l : Level} {U X : Set l} → X → ( U → X → X ) → List U X → X ListIt w f t = t w f LListIt : {l : Level} {U X : Set l} → List U X → (X → List U X) → ( U → List U X → List U X ) → List U X → List U X LListIt {l} {U} {X} w g f t = λ x y → t (w x y) (λ (x' : U) (y' : X) → (f x' (g y')) x y ) -- Cdr : {l : Level} {U : Set l} {X : Set l} → List U X → List U X -- Cdr w = λ x → λ y → w x (λ x y → y) -- lemma181 :{l : Level} {U : Set l} {X : Set l} → Car Zero l2 ≡ n2 -- lemma181 = refl -- lemma182 :{l : Level} {U : Set l} {X : Set l} → Cdr l2 ≡ l1 -- lemma182 = refl Nullp : {l : Level} {U : Set (suc l)} { X : Set (suc l)} → List U (Bool X) → Bool X Nullp {_} {_} {X} list = ListIt (T X) (λ u w → (F X)) list -- bad append Append' : {l : Level} {U X : Set l} → List U (List U X) → List U X → List U X Append' {_} {_} {X} x y = ListIt y Cons x Append : {l : Level} {U : Set l} {X : Set l} → List U X → List U X → List U X Append x y = λ n c → x (y n c) c Append'' : {l : Level} {U X : Set l} → List U X → List U X → List U X Append'' {_} {_} {X} x y = LListIt y (\e n c -> e) Cons x lemma18 :{l : Level} {U : Set l} {X : Set l} → Append {_} {Int U} {X} l1 l2 ≡ Cons n1 (Cons n2 (Cons n1 Nil)) lemma18 = refl lemma18' :{l : Level} {U : Set l} {X : Set l} → Append'' {_} {Int U} {X} l1 l2 ≡ Cons n1 (Cons n2 (Cons n1 Nil)) lemma18' = refl lemma18'' :{l : Level} {U : Set l} {X : Set l} → Append'' {_} {Int U} {X} ≡ Append lemma18'' = refl Reverse : {l : Level} {U : Set l} {X : Set l} → List U (List U X) → List U X Reverse {l} {U} {X} x = ListIt Nil ( λ u w → Append w (Cons u Nil) ) x -- λ x → x (λ x₁ y → x₁) (λ u w s t → w (t u s) t) lemma19 :{l : Level} {U : Set l} {X : Set l} → Reverse {_} {Int U} {X} l3 ≡ Cons n1 (Cons n2 (Cons n3 Nil)) lemma19 = refl Reverse' : {l : Level} {U : Set l} {X : Set l} → List U X → List U X Reverse' {l} {U} {X} x = LListIt Nil (\e n c -> e) ( λ u w → Append w (Cons u Nil) ) x -- λ x x₁ y → x x₁ (λ x' y' → y') -- lemma19' :{l : Level} {U : Set l} {X : Set l} → Reverse' {_} {Int U} {X} l3 ≡ Cons n1 (Cons n2 (Cons n3 Nil)) -- lemma19' = refl Tree : {l : Level} → Set l → Set l → Set l Tree {l} = λ( U X : Set l) → X → ( (U → X) → X ) → X NilTree : {l : Level} {U : Set l} {X : Set l} → Tree U X NilTree {l} {U} {X} = λ(x : X) → λ(y : (U → X) → X) → x Collect : {l : Level} {U : Set l} {X : Set l} → (U → Tree U X ) → Tree U X Collect {l} {U} {X} f = λ(x : X) → λ(y : (U → X) → X) → y (λ(z : U) → f z x y ) TreeIt : {l : Level} {U X X : Set l} → X → ( (U → X) → X ) → Tree U X → X TreeIt w h t = t w h t0 : {l : Level} {X X' : Set l} → Tree (Bool X) X' t0 {l} {X} {X'} = NilTree t1 : {l : Level} {X X' : Set l} → Tree (Bool X) X' t1 {l} {X} {X'} = NilTree -- Collect (λ b → D b NilTree (λ c → Collect NilTree NilTree ))