view src/ToposEx.agda @ 964:0128a662eb02

Topos as pull back
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 23 Feb 2021 16:32:06 +0900
parents 50d8750d32c0
children 396bf884f5e7
line wrap: on
line source

module ToposEx where
open import CCC
open import Level
open import Category
open import cat-utility
open import HomReasoning

open Topos
open Equalizer

--             ○ b
--       b -----------→ 1
--       |              |
--     m |              | ⊤
--       ↓    char m    ↓
--       a -----------→ Ω
--             h
--
--   Ker t h : Equalizer A h (A [ ⊤ o (○ a) ])

topos-pullback : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)  ( 1 : Obj A) (○ : (a : Obj A ) → Hom A a 1)
  → (e2  : {a : Obj A} → ∀ { f : Hom A a 1 } →  A [ f ≈ ○ a ] )
  → (t : Topos A 1 ○ ) → {a : Obj A}  → (h : Hom A a (Ω t)) → Pullback A h (⊤ t)
topos-pullback A 1 ○ e2 t {a} h = record {
      ab = equalizer-c (Ker t h)         -- b
    ; π1 = equalizer   (Ker t h)         -- m
    ; π2 = ○ ( equalizer-c (Ker t h) )   -- ○ b
    ; isPullback = record {
              commute = comm
         ;    pullback = λ {d} {p1} {p2} eq → IsEqualizer.k (isEqualizer (Ker t h)) p1 (lemma1 p1 p2 eq )
         ;    π1p=π1 = IsEqualizer.ek=h (isEqualizer (Ker t h))
         ;    π2p=π2 = λ {d} {p1'} {p2'} {eq} → lemma2 eq
         ;    uniqueness = uniq
      }
  } where
    open ≈-Reasoning A
    comm :  A [ A [ h o equalizer (Ker t h) ] ≈ A [ ⊤ t o ○ (equalizer-c (Ker t h)) ] ]
    comm = begin
            h o equalizer (Ker t h)      ≈⟨ IsEqualizer.fe=ge (isEqualizer (Ker t h)) ⟩
            (⊤ t o ○ a ) o equalizer (Ker t h) ≈↑⟨ assoc ⟩
            ⊤ t o (○ a  o equalizer (Ker t h)) ≈⟨ cdr e2 ⟩
            ⊤ t o ○ (equalizer-c (Ker t h))   ∎
    lemma1 : {d : Obj A}  (p1 : Hom A d a) (p2 : Hom A d 1) (eq : A [ A [ h o p1 ] ≈ A [ ⊤ t o p2 ] ] )
        → A [ A [ h o p1 ] ≈ A [ A [ ⊤ t o ○ a ] o p1 ] ]
    lemma1 {d} p1 p2 eq = begin
            h o p1                      ≈⟨ eq ⟩
            ⊤ t o p2                    ≈⟨ cdr e2 ⟩
            ⊤ t o  (○ d)                ≈↑⟨ cdr e2 ⟩
            ⊤ t o ( ○ a o p1 )          ≈⟨ assoc ⟩
           (⊤ t o ○ a ) o p1            ∎ 
    lemma2 : {d : Obj A}  {p1' : Hom A d a} {p2' : Hom A d 1} (eq : A [ A [ h o p1' ] ≈ A [ ⊤ t o p2' ] ] )
        →   A [ A [  ○ (equalizer-c (Ker t h)) o IsEqualizer.k (isEqualizer (Ker t h)) p1'(lemma1 p1' p2' eq) ] ≈ p2' ]
    lemma2 {d} {p1'} {p2'} eq = begin
             ○ (equalizer-c (Ker t h)) o IsEqualizer.k (isEqualizer (Ker t h)) p1'(lemma1 p1' p2' eq)          ≈⟨ e2 ⟩
             ○ d ≈↑⟨ e2 ⟩
             p2' ∎ 
    uniq :  {d : Obj A} (p' : Hom A d (equalizer-c (Ker t h))) {π1' : Hom A d a} {π2' : Hom A d 1} {eq : A [ A [ h o π1' ] ≈ A [ ⊤ t o π2' ] ]}
            {π1p=π1' : A [ A [ equalizer (Ker t h) o p' ] ≈ π1' ]} {π2p=π2' : A [ A [ ○ (equalizer-c (Ker t h)) o p' ] ≈ π2' ]}
             → A [ IsEqualizer.k (isEqualizer (Ker t h)) π1' (lemma1 π1' π2' eq) ≈ p' ]
    uniq {d} (p') {p1'} {p2'} {eq} {pe1} {pe2} = begin
             IsEqualizer.k (isEqualizer (Ker t h)) p1' (lemma1 p1' p2' eq)  ≈⟨ IsEqualizer.uniqueness  (isEqualizer (Ker t h)) pe1 ⟩
             p' ∎