Mercurial > hg > Members > kono > Proof > category
view discrete.agda @ 648:10f2057c8bff
use module
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 04 Jul 2017 10:16:07 +0900 |
parents | 4c0a955b651d |
children | 06388660995b |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level module discrete where open import Relation.Binary.Core data TwoObject {c₁ : Level} : Set c₁ where t0 : TwoObject t1 : TwoObject --- --- two objects category ( for limit to equalizer proof ) --- --- f --- -----→ --- 0 1 --- -----→ --- g -- -- missing arrows are constrainted by TwoHom data data TwoHom {c₁ c₂ : Level } : TwoObject {c₁} → TwoObject {c₁} → Set c₂ where id-t0 : TwoHom t0 t0 id-t1 : TwoHom t1 t1 arrow-f : TwoHom t0 t1 arrow-g : TwoHom t0 t1 _×_ : ∀ {c₁ c₂} → {a b c : TwoObject {c₁}} → TwoHom {c₁} {c₂} b c → TwoHom {c₁} {c₂} a b → TwoHom {c₁} {c₂} a c _×_ {_} {_} {t0} {t1} {t1} id-t1 arrow-f = arrow-f _×_ {_} {_} {t0} {t1} {t1} id-t1 arrow-g = arrow-g _×_ {_} {_} {t1} {t1} {t1} id-t1 id-t1 = id-t1 _×_ {_} {_} {t0} {t0} {t1} arrow-f id-t0 = arrow-f _×_ {_} {_} {t0} {t0} {t1} arrow-g id-t0 = arrow-g _×_ {_} {_} {t0} {t0} {t0} id-t0 id-t0 = id-t0 open TwoHom -- f g h -- d <- c <- b <- a -- -- It can be proved without TwoHom constraints assoc-× : {c₁ c₂ : Level } {a b c d : TwoObject {c₁} } {f : (TwoHom {c₁} {c₂ } c d )} → {g : (TwoHom b c )} → {h : (TwoHom a b )} → ( f × (g × h)) ≡ ((f × g) × h ) assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} { id-t0 }{ id-t0 }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-f }{ id-t0 }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-g }{ id-t0 }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1 }{ arrow-f }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1 }{ arrow-g }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ arrow-f } = refl assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ arrow-g } = refl assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ id-t1 } = refl TwoId : {c₁ c₂ : Level } (a : TwoObject {c₁} ) → (TwoHom {c₁} {c₂ } a a ) TwoId {_} {_} t0 = id-t0 TwoId {_} {_} t1 = id-t1 open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) TwoCat : {c₁ c₂ : Level } → Category c₁ c₂ c₂ TwoCat {c₁} {c₂} = record { Obj = TwoObject ; Hom = λ a b → TwoHom a b ; _o_ = λ{a} {b} {c} x y → _×_ {c₁ } { c₂} {a} {b} {c} x y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → TwoId a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → identityL {c₁} {c₂ } {a} {b} {f} ; identityR = λ{a b f} → identityR {c₁} {c₂ } {a} {b} {f} ; o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {c₁} {c₂ } {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → assoc-× {c₁} {c₂} {a} {b} {c} {d} {f} {g} {h} } } where identityL : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → ((TwoId B) × f) ≡ f identityL {c₁} {c₂} {t1} {t1} { id-t1 } = refl identityL {c₁} {c₂} {t0} {t0} { id-t0 } = refl identityL {c₁} {c₂} {t0} {t1} { arrow-f } = refl identityL {c₁} {c₂} {t0} {t1} { arrow-g } = refl identityR : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → ( f × TwoId A ) ≡ f identityR {c₁} {c₂} {t1} {t1} { id-t1 } = refl identityR {c₁} {c₂} {t0} {t0} { id-t0 } = refl identityR {c₁} {c₂} {t0} {t1} { arrow-f } = refl identityR {c₁} {c₂} {t0} {t1} { arrow-g } = refl o-resp-≈ : {c₁ c₂ : Level } {A B C : TwoObject {c₁} } {f g : ( TwoHom {c₁} {c₂ } A B)} {h i : ( TwoHom B C)} → f ≡ g → h ≡ i → ( h × f ) ≡ ( i × g ) o-resp-≈ {c₁} {c₂} {a} {b} {c} {f} {.f} {h} {.h} refl refl = refl -- Category with no arrow but identity record DiscreteObj {c₁ : Level } (S : Set c₁) : Set c₁ where field obj : S -- this is necessary to avoid single object open DiscreteObj record DiscreteHom { c₁ : Level} { S : Set c₁} (a : DiscreteObj {c₁} S) (b : DiscreteObj {c₁} S) : Set c₁ where field discrete : a ≡ b -- if f : a → b then a ≡ b dom : DiscreteObj S dom = a open DiscreteHom _*_ : ∀ {c₁} → {S : Set c₁} {a b c : DiscreteObj {c₁} S} → DiscreteHom {c₁} b c → DiscreteHom {c₁} a b → DiscreteHom {c₁} a c _*_ {_} {a} {b} {c} x y = record {discrete = trans ( discrete y) (discrete x) } DiscreteId : { c₁ : Level} { S : Set c₁} ( a : DiscreteObj {c₁} S ) → DiscreteHom {c₁} a a DiscreteId a = record { discrete = refl } open import Relation.Binary.PropositionalEquality assoc-* : {c₁ : Level } { S : Set c₁} {a b c d : DiscreteObj {c₁} S} {f : (DiscreteHom c d )} → {g : (DiscreteHom b c )} → {h : (DiscreteHom a b )} → dom ( f * (g * h)) ≡ dom ((f * g) * h ) assoc-* {c₁} {S} {a} {b} {c} {d} {f} {g} {h } = refl DiscreteCat : {c₁ : Level } → (S : Set c₁) → Category c₁ c₁ c₁ DiscreteCat {c₁} S = record { Obj = DiscreteObj {c₁} S ; Hom = λ a b → DiscreteHom {c₁} {S} a b ; _o_ = λ{a} {b} {c} x y → _*_ {c₁ } {S} {a} {b} {c} x y ; _≈_ = λ x y → dom x ≡ dom y ; -- x ≡ y does not work because refl ≡ discrete f is failed as it should be Id = λ{a} → DiscreteId a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → identityL {a} {b} {f} ; identityR = λ{a b f} → identityR {a} {b} {f} ; o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → assoc-* { c₁} {S} {a} {b} {c} {d} {f} {g} {h} } } where identityL : {a b : DiscreteObj {c₁} S} {f : ( DiscreteHom {c₁} a b) } → dom ((DiscreteId b) * f) ≡ dom f identityL {a} {b} {f} = refl identityR : {A B : DiscreteObj S} {f : ( DiscreteHom {c₁} A B) } → dom ( f * DiscreteId A ) ≡ dom f identityR {a} {b} {f} = refl o-resp-≈ : {A B C : DiscreteObj S } {f g : ( DiscreteHom {c₁} A B)} {h i : ( DiscreteHom B C)} → dom f ≡ dom g → dom h ≡ dom i → dom ( h * f ) ≡ dom ( i * g ) o-resp-≈ {a} {b} {c} {f} {g} {h} {i} refl refl = refl