Mercurial > hg > Members > kono > Proof > category
view Todo.md @ 1120:121e28cccdf6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2024 10:18:45 +0900 |
parents | 321f0fef54c2 |
children |
line wrap: on
line source
Todo ==== CCCGraph.agda --- CCC generated from Graph (iconmplete) p.55 cat-graph-univ : {c₁ : Level} → UniversalMapping (Grph {c₁} {c₁}) (CAT {c₁ } {c₁} {c₁}) forgetful.UC ccc-graph-univ : {c₁ : Level} → UniversalMapping (Grph {c₁} {c₁}) (Cart {c₁ } {c₁} {c₁}) forgetful.UX Polynominal.agda --- Polynominal Category and functional completeness -- an assuption needed in k x phi ≈ k x phi' -- k x (i x) ≈ k x ii postulate xf : {a b c : Obj A } → ( x : Hom A 1 a ) → {z : Hom A b c } → ( y : φ {a} x z ) → ( x ∙ π' ) ≈ π define Polynominal Category as a graph generated one define Polynominal Category as a coMonad Topos --- ToposEx.agda Topos Exercise (incomplete) p.141 ToposIL.agda Topos Internal Language (incomplete) p.143 ToposSub.agda Topos Subobject classifier (incomplete) equalizer.agda --- Equalizer example p.21 Bourroni equations gives an Equalizer postulate uniqueness1 : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → A [ A [ (α bur f g ) o k' ] ≈ h ] → A [ k1 {d} h eq ≈ k' ] system-f.agda --- very incomplete, because this is a meta circular interpreter of Agda yoneda.agda --- Yoneda Functor p.11 ylem0 : {a b : Obj A } → Hom A a a ≡ Hom A a b → a ≡ b