Mercurial > hg > Members > kono > Proof > category
view monoid-monad.agda @ 139:17f45f909770
η and μ defined.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Aug 2013 12:47:37 +0900 |
parents | 293e3e8c43dd |
children | aea890b0f8bc |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Category.Monoid open import Algebra open import Level module monoid-monad {c c₁ c₂ ℓ : Level} { MS : Set ℓ } { Mono : Monoid c ℓ} {A : Category c₁ c₂ ℓ } where open import HomReasoning open import cat-utility open import Category.Cat open import Category.Sets open import Data.Product open import Relation.Binary.Core open import Relation.Binary MC : Category (suc zero) c (suc (ℓ ⊔ c)) MC = MONOID Mono open Monoid -- T : A → (M x A) T : Functor (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) T = record { FObj = \a → (Carrier Mono) × a ; FMap = \f → map ( \x → x ) f ; isFunctor = record { identity = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets )) ; distr = (IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets ))) ; ≈-cong = cong1 } } where cong1 : {ℓ′ : Level} → {a b : Set ℓ′} { f g : Hom (Sets {ℓ′}) a b} → Sets [ f ≈ g ] → Sets [ map (λ x → x) f ≈ map (λ x → x) g ] cong1 _≡_.refl = _≡_.refl Lemma-MM1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ Functor.FMap T f o (λ x → ε Mono , x) ] ≈ Sets [ (λ x → ε Mono , x) o f ] ] Lemma-MM1 {a} {b} {f} = let open ≈-Reasoning (Sets) renaming ( _o_ to _*_ ) in begin Functor.FMap T f o (λ x → ε Mono , x) ≈⟨⟩ (λ x → ε Mono , x) o f ∎ -- a → (ε,a) η : NTrans (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) identityFunctor T η = record { TMap = \a → \(x : a) → ( ε Mono , x ) ; isNTrans = record { commute = \{a} {b} {f} → IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets )) } } -- (m,(m',a)) → (m*m,a) open Functor muMap : (a : Obj Sets ) → FObj T ( FObj T a ) → Σ (Carrier Mono) (λ x → a ) muMap a ( m , ( m' , x ) ) = ( _∙_ Mono m m' , x ) Lemma-MM2 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap T f o (λ x → muMap a x) ] ≈ Sets [ (λ x → muMap b x) o FMap (T ○ T) f ] ] Lemma-MM2 {a} {b} {f} = let open ≈-Reasoning (Sets) renaming ( _o_ to _*_ ) in begin FMap T f o (λ x → muMap a x) ≈⟨⟩ (λ x → muMap b x) o FMap (T ○ T) f ∎ μ : NTrans (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) ( T ○ T ) T μ = record { TMap = \a → \x → muMap a x ; isNTrans = record { commute = \{a} {b} {f} → IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets )) } }