view system-f.agda @ 340:1ff7b85e5bb2

ditr on system T
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 29 Mar 2014 23:12:12 +0900
parents 716f85bc7259
children 45b973f5d89e
line wrap: on
line source

open import Level
open import Relation.Binary.PropositionalEquality

module system-f  where

Bool : {l : Level} (X : Set l) → Set l
Bool = λ{l : Level} → λ(X : Set l) → X → X → X

T : {l : Level} (X : Set l) → Bool X
T X = λ(x y : X) → x

F : {l : Level} (X : Set l) → Bool X
F X = λ(x y : X) → y

D : {l : Level} → {U : Set l} → U → U → Bool U → U
D u v t = t u v

lemma04 : {l : Level} { U : Set l} {u v : U} → D {_} {U} u v (T U ) ≡  u
lemma04 = refl

lemma05 : {l : Level} { U : Set l} {u v : U} → D {_} {U} u v (F U ) ≡  v
lemma05 = refl

_×_ : {l : Level} → Set l → Set l →  Set (suc l)
_×_ {l} U V =  {X : Set l} → (U → V → X)  → X 

<_,_> : {l : Level} {U V : Set l} → U → V → (U ×  V) 
<_,_> {l} {U} {V} u v = λ{X} → λ(x : U → V → X) → x u v

π1 : {l : Level} {U V : Set l} → (U ×  V) → U
π1 {l} {U} {V}  t = t {U} (λ(x : U) → λ(y : V) → x)

π2 : {l : Level} {U V : Set l} → (U ×  V) → V
π2 {l} {U} {V}  t = t {V} (λ(x : U) → λ(y : V) → y)

lemma06 : {l : Level} {U V : Set l } → {u : U } → {v : V} → π1 ( < u , v > ) ≡  u
lemma06 = refl

lemma07 : {l : Level} {U V : Set l } → {u : U } → {v : V} → π2 ( < u , v > ) ≡  v
lemma07 = refl

hoge : {l : Level} {U V : Set l} → U → V  → (U ×  V)
hoge u v = < u , v >

-- lemma08 :  {l : Level} {U V : Set l } → {u : U } →  (t : U ×  V)  → < π1 t  , π2 t > ≡ t
-- lemma08 t = refl

-- Emp definision is still wrong...

Emp  :  {l : Level} {X : Set l} →  Set l
Emp {l} = λ{X : Set l} → X

-- ε :  {l : Level} (U : Set l)  {l' : Level} {U' : Set l'}  → Emp → Emp 
-- ε {l} U t =  t 

-- lemma09 : {l : Level} {U : Set l} {l' : Level} {U' : Set l} → (t : Emp {l} {U} ) → ε U (ε Emp t) ≡ ε U t
-- lemma09 t = refl

-- lemma10 :  {l : Level} {U V X : Set l} →  (t : Emp {_} {U ×  V}) → U × V
-- lemma10  {l} {U} {V} t = ε (U ×  V) t

-- lemma10' : {l : Level} {U V X : Set l} →  (t : Emp {_} {U ×  V}) → Emp
-- lemma10' {l} {U} {V} {X} t = ε (U ×  V) t 

-- lemma100 : {l : Level} {U V X : Set l} →  (t : Emp {_} {U}) → Emp
-- lemma100 {l} {U} {V} t = ε U t

-- lemma101 : {l k : Level} {U V : Set l} →  (t : Emp {_} {U × V}) → π1 (ε (U ×  V) t) ≡ ε U t
-- lemma101 t = refl

-- lemma102 : {l k : Level} {U V : Set l} →  (t : Emp {_} {U × V}) → π2 (ε (U ×  V) t) ≡ ε V t
-- lemma102 t = refl

-- lemma103 : {l : Level} {U V : Set l} → (u : U) → (t : Emp {l} {_} ) → (ε (U → V) t) u ≡ ε V t
-- lemma103 u t = refl

_+_  : {l : Level} → Set l → Set l → Set (suc l)
_+_ {l} U V = {X : Set l} → ( U → X ) → (V → X) → X

ι1 : {l : Level } {U V : Set l} →  U →  U + V
ι1 {l} {U} {V} u = λ{X} → λ(x : U → X) → λ(y : V → X ) → x u

ι2 : {l : Level } {U V : Set l} →  V →  U + V
ι2 {l} {U} {V} v = λ{X} → λ(x : U → X) → λ(y : V → X ) → y v

δ : {l : Level} { U V R S : Set l } → (R → U) → (S → U) → ( R + S ) → U
δ {l} {U} {V} {R} {S} u v t = t {U} (λ(x : R) → u x) ( λ(y : S) → v y)

lemma11 : {l : Level} { U V R S : Set _ } → (u : R → U ) (v : S → U ) → (r : R) → δ {l} {U} {V} {R} {S} u v ( ι1 r )  ≡ u r
lemma11 u v r =  refl

lemma12 : {l : Level} { U V R S : Set _ } → (u : R → U ) (v : S → U ) → (s : S) → δ {l} {U} {V} {R} {S} u v ( ι2 s )  ≡ v s
lemma12 u v s =  refl


_××_ : {l : Level} → Set (suc l) → Set l →  Set (suc l)
_××_ {l} U V =  {X : Set l} → (U → V → X)  → X 

<<_,_>> : {l : Level} {U : Set (suc l) } {V : Set l} → U → V → (U  ××   V) 
<<_,_>> {l} {U} {V} u v = λ{X} → λ(x : U → V → X) → x u v


Int : {l : Level } ( X : Set l ) → Set l
Int X = X → ( X → X ) → X

Zero : {l : Level } → { X : Set l } → Int X
Zero {l} {X} = λ(x : X ) → λ(y : X → X ) → x

S : {l : Level } → { X : Set l } → Int X → Int X
S {l} {X} t = λ(x : X) → λ(y : X → X ) → y ( t x y )

n0 : {l : Level} {X : Set l} → Int X
n0 = Zero 

n1 : {l : Level } → { X : Set l } → Int X
n1 {_} {X} = λ(x : X ) → λ(y : X → X ) → y x

n2 : {l : Level } → { X : Set l } → Int X
n2 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y x)

n3 : {l : Level } → { X : Set l } → Int X
n3 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y (y x))

n4 : {l : Level } → { X : Set l } → Int X
n4 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y (y (y x)))

lemma13 : {l : Level } → { X : Set l } → S (S (Zero {_} {X}))  ≡ n2 
lemma13 = refl

It : {l : Level} {U : Set l} → U → ( U → U ) → Int U → U
It u f t = t u f

R : {l : Level} { U X : Set l}   → U → ( U → Int X →  U ) → Int _ → U 
R {l} {U} {X} u v t =  π1 ( It {suc l} {U ×  Int X} (< u , Zero >) (λ (x : U × Int X) →  < v (π1 x) (π2 x) , S (π2 x) > ) t ) 

-- ItInt : {l : Level} {U : Set l} → Int U → ( Int U → Int U ) → Int U → Int U
-- ItInt {l} {U} u f t = λ t u f

-- RInt : {l : Level} { U X : Set l}   → Int U → ( Int U → Int X →  Int U ) → Int U → Int U 
-- RInt {l} {U} {X} u v t =  π1 ( It {suc l} {Int U ×  Int X} (< u , Zero >) (λ (x : Int U × Int X) →  < v (π1 x) (π2 x) , S (π2 x) > ) t ) 

-- bad adder which modifies input type
add' : {l : Level} {X : Set l} → Int (Int X) → Int X → Int X
add' x y = It y S x

add : {l : Level} {X : Set l} → Int X → Int X → Int X
add x y = λ z t → x (y z t) t

-- bad adder which modifies input type
mul' : {l : Level } {X : Set l} → Int X → Int (Int X) → Int X
mul' {l} {X} x y = It Zero (add x) y

mul : {l : Level } {X : Set l} → Int X → Int X → Int X
mul {l} {X} x y = λ z t → x z ( λ w → y w t )

fact : {l : Level} {X : Set l} → Int _ → Int X
fact  {l} {X} n = R (S Zero) (λ z → λ w → mul z (S w)) n

lemma13' : {l : Level} {X : Set l} → fact {l} {X} n4 ≡ mul n4 ( mul n2 n3)
lemma13' = refl

-- lemma14 : {l : Level} {X : Set l} → (x y : Int X) → mul x y  ≡ mul y x
-- lemma14 x y = It {!!} {!!} {!!}

lemma15 : {l : Level} {X : Set l} (x y : Int X) → mul {l} {X} n2 n3  ≡ mul {l} {X} n3 n2
lemma15 x y = refl

lemma16 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int X →  U ) → R u v Zero ≡ u
lemma16 u v = refl

-- lemma17 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int →  U ) → (t : Int ) → R u v (S t) ≡ v ( R u v t ) t
-- lemma17 u v t = refl

-- postulate lemma17 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int X →  U ) → (t : Int X ) → R u v (S t) ≡ v ( R u v t ) t

List : {l : Level} (U X : Set l) → Set l
List {l} = λ( U X : Set l)  → X → ( U → X →  X ) → X 

Nil : {l : Level} {U : Set l} {X : Set l} → List U X
Nil {l} {U} {X} = λ(x : X) → λ(y : U → X → X) → x

Cons : {l : Level} {U : Set l} {X : Set l} → U → List U X → List U X
Cons {l} {U} {X} u t = λ(x : X) → λ(y : U → X → X) → y u (t x y )

l0 : {l : Level} {X X' : Set l} → List (Int X) (X')
l0 = Nil

l1 : {l : Level} {X X' : Set l} → List (Int X) (X')
l1 = Cons n1 Nil

l2 : {l : Level} {X X' : Set l} → List (Int X) (X')
l2 = Cons n2 l1

l3 : {l : Level} {X X' : Set l} → List (Int X) (X')
l3 = Cons n3 l2

ListIt : {l : Level} {U W : Set l} → (X : Set l) → W → ( U → W → W ) → List U W → W
ListIt _ w f t = t w f

-- Car : {l : Level} {U : Set l} {X : Set l} → List U _ → U  → U 
-- Car x z = ListIt z ( λ u w → u ) x

-- Cdr : {l : Level} {U : Set l} {X : Set l} → List U _ →  List U X
-- Cdr w = λ x → λ y →  w x (λ x y   →  y) 

-- lemma181 :{l : Level} {U : Set l} {X : Set l} → Car Zero l2 ≡ n2
-- lemma181 = refl

-- lemma182 :{l : Level} {U : Set l} {X : Set l} → Cdr l2 ≡ l1
-- lemma182 = refl

Nullp : {l : Level} {U : Set (suc l)} { X : Set (suc l)} → List U (Bool X) → Bool _
Nullp {_} {_} {X} list = ListIt X (T X) (λ u w → (F X)) list

-- bad append
Append' : {l : Level} {U X : Set l} → List U (List U X) → List U X → List U X
Append' {_} {_} {X} x y = ListIt X y Cons x

Append : {l : Level} {U : Set l} {X : Set l} → List U X → List U X → List U X
Append x y = λ s t → x (y s t) t

lemma18 :{l : Level} {U : Set l} {X : Set l} → Append {_} {Int U} {X} l1 l2 ≡ Cons n1 (Cons n2 (Cons n1 Nil))
lemma18 = refl

Reverse : {l : Level} {U : Set l} {X : Set l} → List U (List U X) → List U X
Reverse {l} {U} {X} x = ListIt X Nil ( λ u w → Append w (Cons u Nil) ) x

lemma19 :{l : Level} {U : Set l} {X : Set l} → Reverse {_} {Int U} {X} l3 ≡ Cons n1 (Cons n2 (Cons n3 Nil))
lemma19 = refl

Tree : {l : Level} → Set l → Set l → Set l
Tree {l} = λ( U X : Set l)  → X → ( (U → X) →  X ) → X

NilTree : {l : Level} {U : Set l} {X : Set l} → Tree U X
NilTree {l} {U} {X} = λ(x : X) → λ(y : (U → X) → X) → x

Collect : {l : Level} {U : Set l} {X : Set l} → (U → Tree U X ) → Tree U X
Collect {l} {U} {X} f = λ(x : X) → λ(y : (U → X) → X) → y (λ(z : U) → f z x y )

TreeIt : {l : Level} {U W X : Set l} → W → ( (U → W) → W ) → Tree U W → W
TreeIt w h t = t w h

t0 :  {l : Level} {X X' : Set l} → Tree (Bool X) X'
t0 {l} {X} {X'} =  NilTree 

t1 :  {l : Level} {X X' : Set l} → Tree (Bool X) X'
t1 {l} {X} {X'} =  NilTree -- Collect (λ b → D b NilTree (λ c → Collect NilTree NilTree ))