view src/CCC.agda @ 1023:227e1fe321ea

using Bool and LEM
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 27 Mar 2021 22:52:43 +0900
parents 4b517d46e987
children 40c39d3e6a75
line wrap: on
line source

open import Level
open import Category
module CCC where


open import HomReasoning
open import cat-utility
open  import  Relation.Binary.PropositionalEquality


open import HomReasoning 

record IsCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) 
         ( 1 : Obj A )
         ( ○ : (a : Obj A ) → Hom A a 1 )
          ( _∧_ : Obj A → Obj A → Obj A  ) 
          ( <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b)  ) 
          ( π : {a b : Obj A } → Hom A (a ∧ b) a ) 
          ( π' : {a b : Obj A } → Hom A (a ∧ b) b ) 
          ( _<=_ : (a b : Obj A ) → Obj A ) 
          ( _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ) 
          ( ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a )
             :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
     field
       -- cartesian
       e2  : {a : Obj A} → ∀ { f : Hom A a 1 } →  A [ f ≈ ○ a ]
       e3a : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } →  A [ A [ π o < f , g > ] ≈ f ]
       e3b : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } →  A [ A [ π' o < f , g > ] ≈ g ]
       e3c : {a b c : Obj A} → { h : Hom A c (a ∧ b) } →  A [ < A [ π o h ] , A [ π' o h  ] >  ≈ h ]
       π-cong :  {a b c : Obj A} → { f f' : Hom A c a }{ g g' : Hom A c b } → A [ f ≈ f' ]  → A [ g ≈ g' ]  →  A [ < f , g >  ≈ < f' , g' > ] 
       -- closed
       e4a : {a b c : Obj A} → { h : Hom A (c ∧ b) a } →  A [ A [ ε o < A [ (h *) o π ]  ,  π' > ] ≈ h ]
       e4b : {a b c : Obj A} → { k : Hom A c (a <= b ) } →  A [ ( A [ ε o < A [ k o  π ]  ,  π' > ] ) * ≈ k ]
       *-cong :  {a b c : Obj A} → { f f' : Hom A (a ∧ b) c } → A [ f ≈ f' ]  → A [  f *  ≈  f' * ] 
     open  ≈-Reasoning A 
     e'2 :  ○ 1 ≈ id1 A 1 
     e'2 = begin
            ○ 1
        ≈↑⟨ e2  ⟩
           id1 A 1

     e''2 : {a b : Obj A} {f : Hom A a b } →  ( ○ b o f ) ≈ ○ a 
     e''2 {a} {b} {f} = begin
           ○ b o f
        ≈⟨ e2  ⟩
           ○ a

     π-id : {a b : Obj A} →  < π ,  π' >  ≈ id1 A (a ∧ b ) 
     π-id {a} {b} = begin
           < π ,  π' > 
        ≈↑⟨ π-cong idR idR  ⟩
          < π o id1 A (a ∧ b)  ,  π'  o id1 A (a ∧ b) >
        ≈⟨ e3c ⟩
          id1 A (a ∧ b )

     distr-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → ( < f , g > o h )  ≈  < ( f o h ) , ( g o h ) > 
     distr-π {a} {b} {c} {d} {f} {g} {h} = begin
            < f , g > o h
        ≈↑⟨ e3c ⟩
            < π o  < f , g > o h  , π' o  < f , g > o h  >
        ≈⟨ π-cong assoc assoc ⟩
            < ( π o  < f , g > ) o h  , (π' o  < f , g > ) o h  >
        ≈⟨ π-cong (car e3a ) (car e3b) ⟩
            < f o h ,  g o h  >

     _×_ :  {  a b c d  : Obj A } ( f : Hom A a c ) (g : Hom A b d )  → Hom A (a ∧ b) ( c ∧ d )
     f × g  = < ( f o  π )  ,  (g o π' )  >
     π-exchg : {a b c  : Obj A} {f : Hom A c a }{g : Hom A c b }  →  < π' , π > o < f , g >   ≈  < g , f > 
     π-exchg {a} {b} {c} {f} {g} = begin
            < π' , π > o < f , g >
        ≈⟨ distr-π ⟩
            < π' o < f , g > , π o < f , g > >
        ≈⟨ π-cong e3b e3a ⟩
           < g , f >

     π'π : {a b : Obj A}   →  < π' , π > o < π' , π >   ≈  id1 A (a ∧ b)
     π'π = trans-hom π-exchg π-id
     exchg-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A d b }  →  < f o π , g o π' > o < π' , π >   ≈  < f o π' , g o π > 
     exchg-π {a} {b} {c} {d} {f} {g} = begin
           < f o π , g o π' > o < π' , π >
        ≈⟨ distr-π ⟩
           < (f o π) o < π' , π >  , (g o π' ) o < π' , π > > 
        ≈↑⟨ π-cong assoc assoc ⟩
           < f o (π o < π' , π > ) , g o (π' o < π' , π >)> 
        ≈⟨ π-cong (cdr e3a)  (cdr e3b) ⟩
           < f o π' , g o π >

     π≈  : {a b c : Obj A} {f f' : Hom A c a }{g g' : Hom A c b }  → < f , g >  ≈  <  f' ,  g' >  → f  ≈ f'
     π≈ {_} {_} {_} {f} {f'} {g} {g'}  eq = begin
        f ≈↑⟨ e3a ⟩
        π o < f , g >  ≈⟨ cdr eq ⟩
        π o < f' , g' >  ≈⟨ e3a ⟩
        f'

     π'≈ : {a b c : Obj A} {f f' : Hom A c a }{g g' : Hom A c b }  → < f , g >  ≈  <  f' ,  g' >  → g  ≈ g'
     π'≈ {_} {_} {_} {f} {f'} {g} {g'}  eq = begin
        g ≈↑⟨ e3b ⟩
        π' o < f , g >  ≈⟨ cdr eq ⟩
        π' o < f' , g' >  ≈⟨ e3b ⟩
        g'

     distr-* : {a b c d : Obj A } { h : Hom A (a ∧ b) c } { k : Hom A d a } → ( h * o k )  ≈ ( h o < ( k o π ) , π' > )  * 
     distr-* {a} {b} {c} {d} {h} {k} = begin
             h * o k
        ≈↑⟨ e4b  ⟩
             (  ε o < (h * o k ) o π  , π' > ) *
        ≈⟨ *-cong ( begin
              ε o < (h * o k ) o π  , π' > 
        ≈↑⟨ cdr ( π-cong assoc refl-hom ) ⟩
              ε o ( < h * o ( k o π ) , π' > ) 
        ≈↑⟨ cdr ( π-cong (cdr e3a) e3b ) ⟩
               ε o ( < h * o ( π o < k o π , π' > ) , π' o < k o π , π' > > ) 
        ≈⟨ cdr ( π-cong assoc refl-hom) ⟩
               ε o ( < (h * o π) o < k o π , π' > , π' o < k o π , π' > > ) 
        ≈↑⟨ cdr ( distr-π ) ⟩
               ε o ( < h * o π , π' >  o < k o π , π' > )
        ≈⟨ assoc ⟩
              ( ε o < h * o π , π' > ) o < k o π , π' > 
        ≈⟨ car e4a  ⟩
               h o < k o π , π' > 
        ∎ ) ⟩
            ( h o  <  k o π  , π' > ) *

     α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) )
     α = < ( π  o π  )  , < ( π'  o π )  , π'  > >
     α' : {a b c : Obj A } → Hom A  ( a ∧ ( b ∧ c ) ) (( a ∧ b ) ∧ c )
     α' = < < π , ( π o π' ) > ,  ( π'  o π' )  >
     β : {a b c d : Obj A } { f : Hom A a b} { g : Hom A a c } { h : Hom A a d } → ( α o < < f , g > , h > ) ≈  < f , < g , h > > 
     β {a} {b} {c} {d} {f} {g} {h} = begin
             α o < < f , g > , h >
        ≈⟨⟩
            ( < ( π o π ) , < ( π' o π ) , π' > > ) o  < < f , g > , h >
        ≈⟨ distr-π ⟩
             < ( ( π o π ) o  < < f , g > , h > ) , ( < ( π' o π ) , π' >   o  < < f , g > , h > )  >  
        ≈⟨ π-cong refl-hom distr-π ⟩
             < ( ( π o π ) o  < < f , g > , h > ) , ( < ( ( π' o π ) o  < < f , g > , h > ) , ( π'  o  < < f , g > , h > ) > )  >  
        ≈↑⟨ π-cong assoc ( π-cong assoc refl-hom )  ⟩
             < (  π o (π  o  < < f , g > , h >) ) , ( < (  π' o ( π  o  < < f , g > , h > ) ) , ( π'  o  < < f , g > , h > ) > )  >  
        ≈⟨ π-cong (cdr e3a ) ( π-cong (cdr e3a ) e3b )  ⟩
             < (  π o < f , g >  ) ,  < (  π' o < f , g >  ) , h >   >  
        ≈⟨ π-cong e3a ( π-cong e3b refl-hom )  ⟩
            < f , < g , h > >



record CCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
     field
         1 : Obj A 
         ○ : (a : Obj A ) → Hom A a 1 
         _∧_ : Obj A → Obj A → Obj A   
         <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b)  
         π : {a b : Obj A } → Hom A (a ∧ b) a 
         π' : {a b : Obj A } → Hom A (a ∧ b) b  
         _<=_ : (a b : Obj A ) → Obj A 
         _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) 
         ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a 
         isCCC : IsCCC A 1 ○ _∧_ <_,_> π π' _<=_ _* ε 

open Functor

record CCCFunctor {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ')
         (ca : CCC A) (cb : CCC B) (functor : Functor A B)
         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ')) where
     field
       f1 : FObj functor (CCC.1 ca) ≡ CCC.1 cb 
       f○ : {a : Obj A} → B [ FMap functor (CCC.○ ca a) ≈
           subst (λ k → Hom B (FObj functor a) k) (sym f1) (CCC.○ cb (FObj functor a)) ]
       f∧  : {a b : Obj A}   → FObj functor ( CCC._∧_ ca a b ) ≡ CCC._∧_ cb (FObj functor a ) (FObj functor b)
       f<= : {a b : Obj A}   → FObj functor ( CCC._<=_ ca a b ) ≡ CCC._<=_ cb (FObj functor a ) (FObj functor b)
       f<> : {a b c : Obj A} → (f : Hom A c a ) → (g : Hom A c b )
           → B [ FMap functor (CCC.<_,_> ca f  g )  ≈
                   subst (λ k → Hom B (FObj functor c) k ) (sym f∧ ) ( CCC.<_,_> cb (FMap functor f ) ( FMap functor g )) ]
       fπ  : {a b : Obj A} → B [ FMap functor (CCC.π ca {a} {b})  ≈
                   subst (λ k → Hom B k (FObj functor a) ) (sym f∧ ) (CCC.π  cb {FObj functor a} {FObj functor b}) ]
       fπ' : {a b : Obj A} → B [ FMap functor (CCC.π' ca {a} {b})  ≈
                   subst (λ k → Hom B k (FObj functor b) ) (sym f∧ ) (CCC.π' cb {FObj functor a} {FObj functor b}) ]
       f*  : {a b c : Obj A} → (f : Hom A (CCC._∧_ ca a b) c )  → B [ FMap functor (CCC._* ca f)  ≈
                   subst (λ k → Hom B (FObj functor a) k) (sym f<=) (CCC._*  cb ((subst (λ k → Hom B k (FObj functor c) ) f∧ (FMap functor f) ))) ]
       fε  : {a b : Obj A} → B [ FMap functor (CCC.ε ca {a} {b} )
          ≈  subst (λ k → Hom B k (FObj functor a)) (trans (cong (λ k → CCC._∧_ cb k (FObj functor b)) (sym f<=)) (sym f∧))
              (CCC.ε cb {FObj functor a} {FObj functor b}) ]

----
--
-- Sub Object Classifier as Topos
-- pull back on
--
--     iso          ○ b
--  e ⇐====⇒  b -----------→ 1         m ∙ f ≈ m ∙ g → f ≈ g
--  |         |              |
--  |       m |              | ⊤
--  |         ↓    char m    ↓    Ker h = Equalizer (char m mono)  (⊤ ∙ ○ a )
--  + ------→ a -----------→ Ω        m = Equalizer (char m mono)  (⊤ ∙ ○ a )
--     ker h        h
--
open Equalizer
open import equalizer

record Mono  {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {b a : Obj A} (mono : Hom A b a) : Set  (c₁ ⊔ c₂ ⊔ ℓ)  where
     field
         isMono : {c : Obj A} ( f g : Hom A c b ) → A [ A [ mono o f ]  ≈ A [ mono o g ] ] → A [ f ≈ g ]

open Mono

record IsTopos {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) 
        ( Ω : Obj A )
        ( ⊤ : Hom A (CCC.1 c) Ω )
        (Ker : {a : Obj A} → ( h : Hom A a Ω ) → Equalizer A h (A [ ⊤ o (CCC.○ c a) ]))
        (char : {a b : Obj A} → (m :  Hom A b a) → Mono A m  → Hom A a Ω) :  Set ( suc c₁  ⊔  suc c₂ ⊔ suc ℓ ) where
     field
         char-uniqueness  : {a b : Obj A } {h : Hom A a Ω}  (m :  Hom A b a) → (mono : Mono A m)  
             → A [ char (equalizer (Ker h)) (record { isMono = λ f g → monic (Ker h)}) ≈ h ]
         ker-m : {a b : Obj A} → (m : Hom A b a ) → (mono : Mono A m) → IsEqualizer A m (char m mono) (A [ ⊤ o (CCC.○ c a) ])
     ker : {a : Obj A} → ( h : Hom A a Ω )  → Hom A ( equalizer-c (Ker h) ) a
     ker h = equalizer (Ker h)
     char-m=⊤ :  {a b : Obj A} → (m :  Hom A b a) → (mono : Mono A m) → A [ A [ char m mono  o m ] ≈ A [ ⊤ o CCC.○ c b ] ]
     char-m=⊤ {a} {b} m mono  = begin
            char m mono  o m ≈⟨ IsEqualizer.fe=ge (ker-m m mono)  ⟩
            (⊤ o  CCC.○ c a) o m ≈↑⟨ assoc ⟩
            ⊤ o  (CCC.○ c a o m ) ≈⟨ cdr (IsCCC.e2 (CCC.isCCC c)) ⟩
            ⊤ o CCC.○ c b  ∎  where   open ≈-Reasoning A

record Topos {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)  (c : CCC A)  :  Set ( suc c₁  ⊔  suc c₂ ⊔ suc ℓ ) where
     field
         Ω : Obj A
         ⊤ : Hom A (CCC.1 c) Ω
         Ker : {a : Obj A} → ( h : Hom A a Ω ) → Equalizer A h (A [ ⊤ o (CCC.○ c a) ])
         char : {a b : Obj A} → (m : Hom A b a ) → Mono A m → Hom A a Ω
         isTopos : IsTopos A c Ω ⊤ Ker char
     Monik : {a : Obj A} (h : Hom A a Ω)  → Mono A (equalizer (Ker h))
     Monik h = record { isMono = λ f g → monic (Ker h ) } 

record NatD {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)  ( 1 : Obj A) : Set ( suc c₁  ⊔  suc c₂ ⊔ suc ℓ ) where
     field
         Nat   : Obj A
         nzero : Hom A 1 Nat
         nsuc  : Hom A Nat Nat

open NatD

record IsToposNat {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)  ( 1 : Obj A) (iNat : NatD A 1 )
       (  initialNat : (nat : NatD A 1 ) → Hom A (Nat iNat) (Nat nat) )
  : Set ( suc c₁  ⊔  suc c₂ ⊔ suc ℓ ) where
     field
         izero : (nat : NatD A 1 ) → A [ A [ initialNat nat o nzero iNat ] ≈ nzero nat ]
         isuc  : (nat : NatD A 1 ) → A [ A [ initialNat nat o nsuc iNat ] ≈ A [ nsuc nat o initialNat nat ] ]

record ToposNat {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)  ( 1  : Obj A) : Set ( suc c₁  ⊔  suc c₂ ⊔ suc ℓ ) where
     field
         iNat : NatD A 1
         initialNat : (nat : NatD A 1 ) → Hom A (Nat iNat) (Nat nat)
         nat-unique : (nat : NatD A 1 ) → {g : Hom A (Nat iNat) (Nat nat) }
             → A [ A [ g o nzero iNat ] ≈ nzero nat ]
             → A [ A [ g o nsuc iNat ] ≈ A [ nsuc nat o g ] ]
             → A [ g ≈ initialNat nat ]
         isToposN : IsToposNat A 1 iNat initialNat