Mercurial > hg > Members > kono > Proof > category
view CCCGraph1.agda @ 891:2685eaaa8763
return to Sets and SM
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Apr 2020 08:52:35 +0900 |
parents | 32c11e2fdf82 |
children | ad0732c51d38 |
line wrap: on
line source
open import Level open import Category module CCCgraph1 where open import HomReasoning open import cat-utility open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import CCC open import graph module ccc-from-graph {c₁ c₂ : Level} (G : Graph {c₁} {c₂} ) where open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Binary.Core open Graph data Objs : Set (c₁ ⊔ c₂) where atom : (vertex G) → Objs ⊤ : Objs _∧_ : Objs → Objs → Objs _<=_ : Objs → Objs → Objs data Arrows : (b c : Objs ) → Set ( c₁ ⊔ c₂ ) data Arrow : Objs → Objs → Set (c₁ ⊔ c₂) where --- case i arrow : {a b : vertex G} → (edge G) a b → Arrow (atom a) (atom b) π : {a b : Objs } → Arrow ( a ∧ b ) a π' : {a b : Objs } → Arrow ( a ∧ b ) b ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a _* : {a b c : Objs } → Arrows (c ∧ b ) a → Arrow c ( a <= b ) --- case v data Arrows where id : ( a : Objs ) → Arrows a a --- case i ○ : ( a : Objs ) → Arrows a ⊤ --- case i <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b) -- case iii iv : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c -- cas iv _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c id a ・ g = g ○ a ・ g = ○ _ < f , g > ・ h = < f ・ h , g ・ h > iv f g ・ h = iv f ( g ・ h ) identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f identityR {a} {a} {id a} = refl identityR {a} {⊤} {○ a} = refl identityR {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR identityR identityR {a} {b} {iv f g} = cong (λ k → iv f k ) identityR identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f identityL = refl associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) ≡ ((f ・ g) ・ h) associative (id a) g h = refl associative (○ a) g h = refl associative < f , f₁ > g h = cong₂ (λ j k → < j , k > ) (associative f g h) (associative f₁ g h) associative (iv f f1) g h = cong (λ k → iv f k ) ( associative f1 g h ) PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL = record { Obj = Objs; Hom = λ a b → Arrows a b ; _o_ = λ{a} {b} {c} x y → x ・ y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → id a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ {a b f} → identityL {a} {b} {f} ; identityR = λ {a b f} → identityR {a} {b} {f} ; o-resp-≈ = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → associative f g h } } where o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) o-resp-≈ refl refl = refl eval : {a b : Objs } (f : Arrows a b ) → Arrows a b eval (id a) = id a eval (○ a) = ○ a eval < f , f₁ > = < eval f , eval f₁ > eval (iv (f *) (id a)) = iv ((eval f) *) (id a) eval (iv f (id a)) = iv f (id a) eval (iv (f *) (○ a)) = iv ((eval f)*) (○ a) eval (iv π < g , h >) = eval g eval (iv π' < g , h >) = eval h eval (iv ε < g , h >) = iv ε < eval g , eval h > eval (iv (f *) < g , h >) = iv ((eval f) *) < eval g , eval h > eval (iv f (iv g h)) with eval (iv g h) eval (iv (f *) (iv g h)) | id a = iv ((eval f)*) (id a) eval (iv f (iv g h)) | id a = iv f (id a) eval (iv (f *) (iv g h)) | ○ a = iv ((eval f)*) (○ a) eval (iv π (iv g h)) | < t , t₁ > = t eval (iv π' (iv g h)) | < t , t₁ > = t₁ eval (iv ε (iv g h)) | < t , t₁ > = iv ε < t , t₁ > eval (iv (f *) (iv g h)) | < t , t₁ > = iv ((eval f) *) < t , t₁ > eval (iv f (iv g h)) | iv f1 t = iv f (iv f1 t) refl-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → f ≡ f1 refl-<l> refl = refl refl-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → g ≡ g1 refl-<r> refl = refl idem-eval : {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f iv-e-arrow : { a : Objs } → {b c : vertex G } → (x : edge G b c ) ( g : Arrows a (atom b) ) → eval (iv (arrow x) g) ≡ iv (arrow x) (eval g) iv-e-arrow x (id (atom _)) = refl iv-e-arrow x (iv f g) with eval (iv f g) iv-e-arrow x (iv f g) | id (atom _) = refl iv-e-arrow x (iv f g) | iv f₁ t = refl iv-e-ε : { a b c : Objs } → ( g : Arrows a ((c <= b) ∧ b ) ) → eval (iv ε g) ≡ iv ε (eval g) iv-e-ε (id _) = refl iv-e-ε < g , g₁ > = refl iv-e-ε (iv f g) with eval (iv f g) iv-e-ε (iv f g) | id _ = refl iv-e-ε (iv f g) | < t , t₁ > = refl iv-e-ε (iv f g) | iv f₁ t = refl iv-e-* : { a b c d : Objs } → { f : Arrows (d ∧ b) c} → ( g : Arrows a d ) → eval (iv (f *) g) ≡ iv ((eval f) *) (eval g) iv-e-* (id a) = refl iv-e-* (○ a) = refl iv-e-* < g , g₁ > = refl iv-e-* (iv f g) with eval (iv f g) iv-e-* (iv f g) | id a = refl iv-e-* (iv f g) | ○ a = refl iv-e-* (iv f g) | < t , t₁ > = refl iv-e-* (iv (f *) g) | iv f₁ t = {!!} iv-e-* (iv f g) | iv f₁ t = {!!} iv-e : { a b c : Objs } → (x : Arrow b c ) ( f : Arrows a b) → { d : Objs } { y : Arrow d b } { g : Arrows a d } → eval f ≡ iv y g → eval (iv x f) ≡ iv x (eval f) iv-e x (id a) () iv-e x (○ a) () iv-e x < f , f₁ > () iv-e x (iv f g) {_} {y} {h} eq with eval (iv f g) iv-e x (iv f g) {_} {y} {h} refl | iv y h = {!!} π-lemma : {a b c : Objs } → ( g : Arrows a ( b ∧ c ) ) ( f1 : Arrows a b ) ( f2 : Arrows a c ) → eval g ≡ < f1 , f2 > → eval (iv π g ) ≡ f1 π-lemma < g , g₁ > f1 f2 refl = refl π-lemma (iv π g) f1 f2 eq with eval (iv π g) π-lemma (iv π g) f1 f2 refl | < t , t₁ > = refl π-lemma (iv π' g) f1 f2 eq with eval (iv π' g) π-lemma (iv π' g) f1 f2 refl | < t , t₁ > = refl π-lemma (iv ε g) f1 f2 eq with eval (iv ε g) π-lemma (iv ε g) f1 f2 refl | < t , t₁ > = refl π'-lemma : {a b c : Objs } → ( g : Arrows a ( b ∧ c ) ) ( f1 : Arrows a b ) ( f2 : Arrows a c ) → eval g ≡ < f1 , f2 > → eval (iv π' g ) ≡ f2 π'-lemma < g , g₁ > f1 f2 refl = refl π'-lemma (iv π g) f1 f2 eq with eval (iv π g) π'-lemma (iv π g) f1 f2 refl | < t , t₁ > = refl π'-lemma (iv π' g) f1 f2 eq with eval (iv π' g) π'-lemma (iv π' g) f1 f2 refl | < t , t₁ > = refl π'-lemma (iv ε g) f1 f2 eq with eval (iv ε g) π'-lemma (iv ε g) f1 f2 refl | < t , t₁ > = refl iv-d : { a b c : Objs } → (x : Arrow b c ) ( g : Arrows a b ) → eval (iv x g) ≡ eval (iv x (eval g)) iv-d (arrow x) g = begin eval (iv (arrow x) g) ≡⟨ iv-e-arrow x g ⟩ iv (arrow x) (eval g) ≡⟨ cong (λ k → iv (arrow x) k ) ( sym ( idem-eval g) ) ⟩ iv (arrow x) (eval (eval g)) ≡⟨ sym (iv-e-arrow x (eval g)) ⟩ eval (iv (arrow x) (eval g)) ∎ where open ≡-Reasoning iv-d π (id _) = refl iv-d π < g , g₁ > = sym (idem-eval g) iv-d π (iv x f ) with eval (iv x f) | inspect eval (iv x f) ... | id _ | m = refl ... | < f1 , f2 > | record {eq = ee } = begin f1 ≡⟨ sym ( π-lemma (iv x f) f1 f2 ee ) ⟩ eval (iv π (iv x f)) ≡⟨ sym (idem-eval (iv π (iv x f))) ⟩ eval (eval (iv π (iv x f))) ≡⟨ cong (λ k → eval k ) (π-lemma (iv x f) f1 f2 ee ) ⟩ eval f1 ∎ where open ≡-Reasoning iv-d π (iv x f) | iv x1 f1 | record { eq = ee } = begin iv π (iv x1 f1) ≡⟨ sym (cong (λ k → iv π k ) ee) ⟩ iv π (eval (iv x f)) ≡⟨ sym (iv-e π (iv x f) ee ) ⟩ eval (iv π (iv x f)) ≡⟨ sym (idem-eval (iv π (iv x f))) ⟩ eval (eval (iv π (iv x f))) ≡⟨ cong (λ k → eval k ) ( iv-e π (iv x f) ee ) ⟩ eval (iv π (eval (iv x f))) ≡⟨ cong (λ k → eval (iv π k)) ee ⟩ eval (iv π (iv x1 f1)) ∎ where open ≡-Reasoning iv-d π' (id _) = refl iv-d π' < g , g₁ > = sym (idem-eval g₁) iv-d π' (iv x f ) with eval (iv x f) | inspect eval (iv x f) ... | id _ | m = refl ... | < f1 , f2 > | record {eq = ee } = begin f2 ≡⟨ sym ( π'-lemma (iv x f) f1 f2 ee ) ⟩ eval (iv π' (iv x f)) ≡⟨ sym (idem-eval (iv π' (iv x f))) ⟩ eval (eval (iv π' (iv x f))) ≡⟨ cong (λ k → eval k ) (π'-lemma (iv x f) f1 f2 ee ) ⟩ eval f2 ∎ where open ≡-Reasoning iv-d π' (iv x f) | iv x1 f1 | record { eq = ee } = begin iv π' (iv x1 f1) ≡⟨ sym (cong (λ k → iv π' k ) ee) ⟩ iv π' (eval (iv x f)) ≡⟨ sym (iv-e π' (iv x f) ee ) ⟩ eval (iv π' (iv x f)) ≡⟨ sym (idem-eval (iv π' (iv x f))) ⟩ eval (eval (iv π' (iv x f))) ≡⟨ cong (λ k → eval k ) ( iv-e π' (iv x f) ee ) ⟩ eval (iv π' (eval (iv x f))) ≡⟨ cong (λ k → eval (iv π' k)) ee ⟩ eval (iv π' (iv x1 f1)) ∎ where open ≡-Reasoning iv-d ε g = begin eval (iv ε g) ≡⟨ iv-e-ε g ⟩ iv ε (eval g) ≡⟨ cong (λ k → iv ε k ) ( sym ( idem-eval g) ) ⟩ iv ε (eval (eval g)) ≡⟨ sym (iv-e-ε (eval g)) ⟩ eval (iv ε (eval g)) ∎ where open ≡-Reasoning iv-d (x *) g = begin eval (iv (x *) g) ≡⟨ iv-e-* g ⟩ iv ((eval x) *) (eval g) ≡⟨ cong (λ k → iv ((eval x) *) k ) ( sym ( idem-eval g) ) ⟩ iv ((eval x) *) (eval (eval g)) ≡⟨ sym (iv-e-* (eval g)) ⟩ eval (iv (x *) (eval g)) ∎ where open ≡-Reasoning idem-eval (id a) = refl idem-eval (○ a) = refl idem-eval < f , f₁ > = cong₂ ( λ j k → < j , k > ) (idem-eval f) (idem-eval f₁) idem-eval (iv (f *) (id a)) = {!!} idem-eval (iv f (id a)) = {!!} idem-eval (iv (f *) (○ a)) = {!!} idem-eval (iv f (○ a)) = {!!} idem-eval (iv π < g , g₁ >) = idem-eval g idem-eval (iv π' < g , g₁ >) = idem-eval g₁ idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁) idem-eval (iv (x *) < f , f₁ >) = {!!} -- cong₂ ( λ j k → iv ((eval x) *) < j , k > ) (idem-eval f) (idem-eval f₁) idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) | inspect eval (iv g h) idem-eval (iv f (iv g h)) | id a | m | _ = {!!} idem-eval (iv f (iv g h)) | ○ a | m | _ = {!!} idem-eval (iv π (iv g h)) | < t , t₁ > | m | _ = refl-<l> {!!} idem-eval (iv π' (iv g h)) | < t , t₁ > | m | _ = refl-<r> {!!} idem-eval (iv ε (iv g h)) | < t , t₁ > | m | _ = {!!} -- cong ( λ k → iv ε k ) ? idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m | _ = {!!} -- cong ( λ k → iv (f *) k ) m idem-eval (iv ε (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} -- trans (iv-e-ε (iv f₁ t)) (cong ( λ k → iv ε k ) m ) idem-eval (iv (x *) (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} -- trans (iv-e-* (iv f₁ t)) {!!} -- (cong ( λ k → iv (x *) k ) m ) idem-eval (iv π (iv g h)) | iv f₁ t | m | record { eq = ee } = begin {!!} ≡⟨ {!!} ⟩ eval (iv π ( iv f₁ t)) ≡⟨ {!!} ⟩ eval (iv π (eval (iv g h ))) ≡⟨ {!!} ⟩ eval (iv π (iv g h)) ≡⟨ iv-e π (iv g h) ee ⟩ iv π (eval (iv g h)) ≡⟨ cong (λ k → iv π k ) ee ⟩ iv π ( iv f₁ t) ≡⟨ {!!} ⟩ {!!} ∎ where open ≡-Reasoning idem-eval (iv π' (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} idem-eval (iv (arrow x) (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} -- trans (iv-e-arrow x (iv f₁ t)) (cong ( λ k → iv (arrow x) k ) m ) PL1 : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL1 = record { Obj = Objs; Hom = λ a b → Arrows a b ; _o_ = λ{a} {b} {c} x y → x ・ y ; _≈_ = λ x y → eval x ≡ eval y ; Id = λ{a} → id a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ {a b f} → cong (λ k → eval k ) (identityL {a} {b} {f}); identityR = λ {a b f} → cong (λ k → eval k ) (identityR {a} {b} {f}); o-resp-≈ = λ {a b c f g h i} → ore {a} {b} {c} f g h i ; associative = λ{a b c d f g h } → cong (λ k → eval k ) (associative f g h ) } } where d-eval : {A B C : Objs} (f : Arrows B C) (g : Arrows A B) → eval (f ・ g) ≡ eval (eval f ・ eval g) d-eval (id a) g = sym (idem-eval g) d-eval (○ a) g = refl d-eval < f , f₁ > g = cong₂ (λ j k → < j , k > ) (d-eval f g) (d-eval f₁ g) d-eval (iv x (id a)) g = {!!} -- iv-d x g d-eval (iv (x *) (○ a)) g = {!!} -- refl d-eval (iv π < f , f₁ >) g = d-eval f g d-eval (iv π' < f , f₁ >) g = d-eval f₁ g d-eval (iv ε < f , f₁ >) g = cong₂ (λ j k → iv ε k ) (d-eval f g) ( cong₂ (λ j k → < j , k > ) ( d-eval f g ) ( d-eval f₁ g )) d-eval (iv (x *) < f , f₁ >) g = {!!} -- cong₂ (λ j k → iv ((eval x) *) k ) (d-eval f g) ( -- cong₂ (λ j k → < j , k > ) ( d-eval f g ) ( d-eval f₁ g )) d-eval (iv x (iv f f₁)) g = begin eval (iv x (iv f f₁) ・ g) ≡⟨⟩ eval (iv x (iv f f₁ ・ g)) ≡⟨ {!!} ⟩ eval (iv x (eval (iv f f₁ ・ g))) ≡⟨ {!!} ⟩ eval (iv x (eval (iv f f₁) ・ eval g)) ≡⟨ {!!} ⟩ eval (eval (iv x (iv f f₁)) ・ eval g) ∎ where open ≡-Reasoning ore : {A B C : Objs} (f g : Arrows A B) (h i : Arrows B C) → eval f ≡ eval g → eval h ≡ eval i → eval (h ・ f) ≡ eval (i ・ g) ore f g h i f=g h=i = begin eval (h ・ f) ≡⟨ d-eval h f ⟩ eval (eval h ・ eval f) ≡⟨ cong₂ (λ j k → eval ( j ・ k )) h=i f=g ⟩ eval (eval i ・ eval g) ≡⟨ sym ( d-eval i g ) ⟩ eval (i ・ g) ∎ where open ≡-Reasoning fmap : {A B : Obj PL} → Hom PL A B → Hom PL A B fmap f = {!!} PLCCC : Functor PL PL PLCCC = record { FObj = λ x → x ; FMap = fmap ; isFunctor = record { identity = {!!} ; distr = {!!} ; ≈-cong = {!!} } }