Mercurial > hg > Members > kono > Proof > category
view comparison-em.agda @ 474:2d32ded94aaf
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 07 Mar 2017 08:27:33 +0900 |
parents | d3cd28a71b3f |
children | a5f2ca67e7c5 |
line wrap: on
line source
-- -- -- -- -- -- -- -- -- Comparison Functor of Eilenberg-Moore Category -- defines U^K and F^K as a resolution of Monad -- checks Adjointness -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> -- -- -- -- -- -- -- -- open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat open import Relation.Binary.Core module comparison-em { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { M' : Monad A T η μ } {c₁' c₂' ℓ' : Level} ( B : Category c₁' c₂' ℓ' ) { U^K : Functor B A } { F^K : Functor A B } { η^K : NTrans A A identityFunctor ( U^K ○ F^K ) } { ε^K : NTrans B B ( F^K ○ U^K ) identityFunctor } { μ^K : NTrans A A (( U^K ○ F^K ) ○ ( U^K ○ F^K )) ( U^K ○ F^K ) } ( Adj^K : Adjunction A B U^K F^K η^K ε^K ) ( RK : MResolution A B T U^K F^K {η^K} {ε^K} {μ^K} Adj^K ) where open import adj-monad T^K = U^K ○ F^K μ^K' : NTrans A A (( U^K ○ F^K ) ○ ( U^K ○ F^K )) ( U^K ○ F^K ) μ^K' = UεF A B U^K F^K ε^K M : Monad A (U^K ○ F^K ) η^K μ^K' M = Adj2Monad A B {U^K} {F^K} {η^K} {ε^K} Adj^K open import em-category {c₁} {c₂} {ℓ} {A} { U^K ○ F^K } { η^K } { μ^K' } { M } open Functor open NTrans open Adjunction open MResolution open EMHom emkobj : Obj B → EMObj emkobj b = record { obj = FObj U^K b ; φ = FMap U^K (TMap ε^K b) ; isAlgebra = record { identity = identity1 b; eval = eval1 b } } where identity1 : (b : Obj B) → A [ A [ (FMap U^K (TMap ε^K b)) o TMap η^K (FObj U^K b) ] ≈ id1 A (FObj U^K b) ] identity1 b = let open ≈-Reasoning (A) in begin (FMap U^K (TMap ε^K b)) o TMap η^K (FObj U^K b) ≈⟨ IsAdjunction.adjoint1 (isAdjunction Adj^K) ⟩ id1 A (FObj U^K b) ∎ eval1 : (b : Obj B) → A [ A [ (FMap U^K (TMap ε^K b)) o TMap μ^K' (FObj U^K b) ] ≈ A [ (FMap U^K (TMap ε^K b)) o FMap T^K (FMap U^K (TMap ε^K b)) ] ] eval1 b = let open ≈-Reasoning (A) in begin (FMap U^K (TMap ε^K b)) o TMap μ^K' (FObj U^K b) ≈⟨⟩ (FMap U^K (TMap ε^K b)) o FMap U^K (TMap ε^K ( FObj F^K (FObj U^K b))) ≈⟨ sym (distr U^K) ⟩ FMap U^K (B [ TMap ε^K b o (TMap ε^K ( FObj F^K (FObj U^K b))) ] ) ≈⟨ fcong U^K (nat ε^K) ⟩ -- Horizontal composition FMap U^K (B [ TMap ε^K b o FMap F^K (FMap U^K (TMap ε^K b)) ] ) ≈⟨ distr U^K ⟩ (FMap U^K (TMap ε^K b)) o FMap U^K (FMap F^K (FMap U^K (TMap ε^K b))) ≈⟨⟩ (FMap U^K (TMap ε^K b)) o FMap T^K (FMap U^K (TMap ε^K b)) ∎ open EMObj emkmap : {a b : Obj B} (f : Hom B a b) → EMHom (emkobj a) (emkobj b) emkmap {a} {b} f = record { EMap = FMap U^K f ; homomorphism = homomorphism1 a b f } where homomorphism1 : (a b : Obj B) (f : Hom B a b) → A [ A [ (φ (emkobj b)) o FMap T^K (FMap U^K f) ] ≈ A [ (FMap U^K f) o (φ (emkobj a)) ] ] homomorphism1 a b f = let open ≈-Reasoning (A) in begin (φ (emkobj b)) o FMap T^K (FMap U^K f) ≈⟨⟩ FMap U^K (TMap ε^K b) o FMap U^K (FMap F^K (FMap U^K f)) ≈⟨ sym (distr U^K) ⟩ FMap U^K ( B [ TMap ε^K b o FMap F^K (FMap U^K f) ] ) ≈⟨ sym (fcong U^K (nat ε^K)) ⟩ FMap U^K ( B [ f o TMap ε^K a ] ) ≈⟨ distr U^K ⟩ (FMap U^K f) o FMap U^K (TMap ε^K a) ≈⟨⟩ (FMap U^K f) o ( φ (emkobj a)) ∎ K^T : Functor B Eilenberg-MooreCategory K^T = record { FObj = emkobj ; FMap = emkmap ; isFunctor = record { ≈-cong = ≈-cong ; identity = identity ; distr = distr1 } } where identity : {a : Obj B} → emkmap (id1 B a) ≗ EM-id {emkobj a} identity {a} = let open ≈-Reasoning (A) in begin EMap (emkmap (id1 B a)) ≈⟨⟩ FMap U^K (id1 B a) ≈⟨ IsFunctor.identity (isFunctor U^K) ⟩ id1 A ( FObj U^K a ) ≈⟨⟩ EMap (EM-id {emkobj a}) ∎ ≈-cong : {a b : Obj B} → {f g : Hom B a b} → B [ f ≈ g ] → emkmap f ≗ emkmap g ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in begin EMap (emkmap f) ≈⟨ IsFunctor.≈-cong (isFunctor U^K) f≈g ⟩ EMap (emkmap g) ∎ distr1 : {a b c : Obj B} {f : Hom B a b} {g : Hom B b c} → ( (emkmap (B [ g o f ])) ≗ (emkmap g ∙ emkmap f) ) distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in begin EMap (emkmap (B [ g o f ] )) ≈⟨ distr U^K ⟩ EMap (emkmap g ∙ emkmap f) ∎ Lemma-EM20 : { a b : Obj B} { f : Hom B a b } → A [ FMap U^T ( FMap K^T f) ≈ FMap U^K f ] Lemma-EM20 {a} {b} {f} = let open ≈-Reasoning (A) in begin FMap U^T ( FMap K^T f) ≈⟨⟩ FMap U^K f ∎ -- Lemma-EM21 : { a : Obj B} → FObj U^T ( FObj K^T a) = FObj U^K a Lemma-EM22 : { a b : Obj A} { f : Hom A a b } → A [ EMap ( FMap K^T ( FMap F^K f) ) ≈ EMap ( FMap F^T f ) ] Lemma-EM22 {a} {b} {f} = let open ≈-Reasoning (A) in begin EMap ( FMap K^T ( FMap F^K f) ) ≈⟨⟩ FMap U^K ( FMap F^K f) ≈⟨⟩ EMap ( FMap F^T f ) ∎ -- Lemma-EM23 : { a b : Obj A} → ( FObj K^T ( FObj F^K f) ) = ( FObj F^T f ) -- Lemma-EM24 : {a : Obj A } {b : Obj B} → A [ TMap η^K (FObj U^K b) ≈ TMap η^K a ] -- Lemma-EM24 = ? Lemma-EM26 : {b : Obj B} → A [ EMap (TMap ε^T ( FObj K^T b)) ≈ FMap U^K ( TMap ε^K b) ] Lemma-EM26 {b} = let open ≈-Reasoning (A) in begin EMap (TMap ε^T ( FObj K^T b)) ≈⟨⟩ FMap U^K ( TMap ε^K b) ∎