view yoneda.agda @ 194:3271d2d04b17

F2Nat→Nat2F done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 30 Aug 2013 19:46:40 +0900
parents 4e6f080f0107
children 428d46dfd5aa
line wrap: on
line source

----
--
--  A → Sets^A^op  : Yoneda Functor
--     Contravariant Functor h_a
--     Nat(h_a,F)
--                        Shinji KONO <kono@ie.u-ryukyu.ac.jp>
----

open import Category -- https://github.com/konn/category-agda                                                                                     
open import Level
open import Category.Sets
module yoneda { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where

open import HomReasoning
open import cat-utility
open import Relation.Binary.Core
open import Relation.Binary


-- Contravariant Functor : op A → Sets  ( Obj of Sets^{A^op} )
open Functor

-- A is Locally small
postulate ≈-≡ : {a b : Obj A } { x y : Hom A a b } →  (x≈y : A [ x ≈ y  ]) → x ≡ y

import Relation.Binary.PropositionalEquality
-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂


CF' : (a : Obj A) → Functor A Sets
CF' a = record {
        FObj = λ b → Hom A a b
        ; FMap =   λ {b c : Obj A } → λ ( f : Hom A b c ) → λ (g : Hom A a b ) →  A [ f o g ] 
        ; isFunctor = record {
             identity = identity
             ; distr = λ {a} {b} {c} {f} {g} → distr1 a b c f g
             ; ≈-cong = cong1
        } 
    } where
        lemma-CF1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x
        lemma-CF1 {b} x = let open ≈-Reasoning (A) in ≈-≡ idL
        identity : {b : Obj A} → Sets [ (λ (g : Hom A a b ) → A [ id1 A b o g ]) ≈ ( λ g → g ) ]
        identity {b} = extensionality lemma-CF1
        lemma-CF2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c) → (x : Hom A a a₁ )→ A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x
        lemma-CF2 a₁ b c f g x = let open ≈-Reasoning (A) in ≈-≡ ( begin
               A [ A [ g o f ] o x ]
             ≈↑⟨ assoc ⟩
               A [ g o A [ f o x ] ] 
             ≈⟨⟩
               ( λ x →  A [ g o x  ]  ) ( ( λ x → A [ f o x ] ) x )
             ∎ )
        distr1 :   (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c) →
                Sets [ (λ g₁ → A [ A [ g o f ] o g₁ ]) ≈ Sets [ (λ g₁ → A [ g o g₁ ]) o (λ g₁ → A [ f o g₁ ]) ] ]
        distr1 a b c f g = extensionality ( λ x → lemma-CF2 a b c f g x )
        cong1 :  {A₁ B : Obj A} {f g : Hom A A₁ B} → A [ f ≈ g ] → Sets [ (λ g₁ → A [ f o g₁ ]) ≈ (λ g₁ → A [ g o g₁ ]) ]
        cong1 eq = extensionality ( λ x → ( ≈-≡ (  
                 (IsCategory.o-resp-≈  ( Category.isCategory A )) ( IsEquivalence.refl (IsCategory.isEquivalence  ( Category.isCategory A ))) eq )))

open import Function

CF : {a : Obj A} → Functor (Category.op A) (Sets {c₂})
CF {a} = record {
        FObj = λ b → Hom (Category.op A) a b  ;
        FMap =   λ {b c : Obj A } → λ ( f : Hom  A c b ) → λ (g : Hom  A b a ) →  (Category.op A) [ f o g ] ;
        isFunctor = record {
             identity =  \{b} → extensionality ( λ x → lemma-CF1 {b} x ) ;
             distr = λ {a} {b} {c} {f} {g} → extensionality ( λ x → lemma-CF2 a b c f g x ) ;
             ≈-cong = λ eq → extensionality ( λ x →  lemma-CF3 x eq ) 
        } 
    }  where
        lemma-CF1 : {b : Obj A } → (x : Hom A b a) →  (Category.op A) [ id1 A b o x ] ≡ x
        lemma-CF1 {b} x = let open ≈-Reasoning (Category.op A) in ≈-≡ idL
        lemma-CF2 :  (a₁ b c : Obj A) (f : Hom A b a₁) (g : Hom A c b ) → (x : Hom A a₁ a )→ 
               Category.op A [ Category.op A [ g o f ] o x ] ≡ (Sets [ _[_o_] (Category.op A) g o _[_o_] (Category.op A) f ]) x
        lemma-CF2 a₁ b c f g x = let open ≈-Reasoning (Category.op A) in ≈-≡ ( begin
               Category.op A [ Category.op A [ g o f ] o x ]
             ≈↑⟨ assoc ⟩
               Category.op A [ g o Category.op A [ f o x ] ]
             ≈⟨⟩
               ( λ x →  Category.op A [ g o x  ]  ) ( ( λ x → Category.op A [ f o x ] ) x )
             ∎ )
        lemma-CF3 :  {b c : Obj A} {f g : Hom A c b } → (x : Hom A b a ) → A [ f ≈ g ] →  Category.op A [ f o x ] ≡ Category.op A [ g o x ]
        lemma-CF3 {_} {_} {f} {g} x eq =  let open ≈-Reasoning (Category.op A) in ≈-≡   ( begin
                Category.op A [ f o x ]
             ≈⟨ resp refl-hom eq ⟩
                Category.op A [ g o x ]
             ∎ )

YObj = Functor (Category.op A) (Sets {c₂})
YHom = λ (f : YObj ) → λ (g : YObj ) → NTrans (Category.op A) Sets f g

y-map :  ( a b : Obj A ) → (f : Hom A a b ) → (x : Obj (Category.op A)) → FObj (CF {a}) x → FObj (CF {b} ) x 
y-map  a b f x = λ ( g : Hom A x a ) → A [ f o g ]  --  ( h : Hom A x b ) 

y-nat : {a b : Obj A } → (f : Hom A a b ) → YHom (CF {a}) (CF {b}) 
y-nat {a} {b} f = record { TMap =  y-map  a b f ; isNTrans = isNTrans1 {a} {b} f } where
   lemma-CF4 : {a₁ b₁ : Obj (Category.op A)} {g : Hom (Category.op A) a₁ b₁} → {a b : Obj A } → (f : Hom A a b ) →
        Sets [ Sets [ FMap CF g o y-map a b f a₁ ] ≈
        Sets [ y-map a b f b₁ o FMap CF g ] ]
   lemma-CF4 {a₁} {b₁} {g} {a} {b} f = let open ≈-Reasoning A in extensionality ( λ x →  ≈-≡ ( begin
                A [ A [ f o x ] o g ]
             ≈↑⟨ assoc ⟩
                A [ f o A [ x  o g ] ]
             ∎ ) )
   isNTrans1 : {a b : Obj A } →  (f : Hom A a b ) → IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) (CF {b}) (y-map a b f )
   isNTrans1 {a} {b} f = record { commute = λ{a₁ b₁ g } → lemma-CF4 {a₁} {b₁} {g} {a} {b} f } 

open NTrans 
Yid : {a : YObj} → YHom a a
Yid {a} = record { TMap = \a -> \x -> x ; isNTrans = isNTrans1 {a} } where
   isNTrans1 : {a : YObj } → IsNTrans (Category.op A) (Sets {c₂}) a a (\a -> \x -> x )
   isNTrans1 {a} = record { commute = refl  }

_+_ : {a b c : YObj} → YHom b c → YHom a b → YHom a c
_+_{a} {b} {c} f g  = record { TMap = λ x → Sets [ TMap f x o TMap g x ] ; isNTrans = isNTrans1  } where
   commute1 :  (a b c : YObj ) (f : YHom  b c)  (g : YHom a b ) 
            (a₁ b₁ : Obj (Category.op A)) (h : Hom (Category.op A) a₁ b₁) →
                        Sets [ Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ] ≈
                        Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ] ]
   commute1  a b c f g a₁ b₁ h =   let open ≈-Reasoning (Sets {c₂})in begin
                Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ]
             ≈⟨ assoc {_} {_} {_} {_} {FMap c h } {TMap f a₁} {TMap g a₁} ⟩
                Sets [ Sets [ FMap c h o TMap f a₁ ] o TMap g a₁ ] 
             ≈⟨ car (nat f) ⟩
                Sets [ Sets [ TMap f b₁ o FMap b h ] o TMap g a₁ ] 
             ≈↑⟨ assoc {_} {_} {_} {_} { TMap f b₁} {FMap b h } {TMap g a₁}⟩
                Sets [ TMap f b₁ o Sets [ FMap b h  o TMap g a₁ ]  ]
             ≈⟨ cdr {_} {_} {_} {_} {_} { TMap f b₁} (nat g) ⟩
                Sets [ TMap f b₁ o Sets [ TMap g b₁  o FMap a h ]  ]
             ≈↑⟨ assoc  {_} {_} {_} {_} {TMap f b₁} {TMap g b₁} { FMap a h}  ⟩
                Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ] 

   isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) a c (λ x → Sets [ TMap f x o TMap g x ]) 
   isNTrans1 = record { commute = λ {a₁ b₁ h} → commute1 a b c f g a₁ b₁ h }

_==_  :  {a b : YObj} → YHom a b → YHom a b → Set (c₂ ⊔ c₁)
_==_  f g =  TMap f ≡ TMap g 

infix  4 _==_

isSetsAop :  IsCategory YObj YHom _==_ _+_ Yid
isSetsAop  =  
  record  { isEquivalence =  record {refl = refl ; trans = ≡-trans ; sym = ≡-sym}
        ; identityL = refl
        ; identityR = refl
        ; o-resp-≈ =  λ{a b c f g h i } → o-resp-≈      {a} {b} {c} {f} {g} {h} {i}
        ; associative = refl
        } where
            o-resp-≈ : {A₁ B C : YObj} {f g : YHom A₁ B} {h i : YHom B C} → 
                f == g → h == i → h + f == i + g
            o-resp-≈ refl refl =  refl

SetsAop : Category (suc (ℓ ⊔ (suc c₂) ⊔ c₁)) (suc ( ℓ ⊔ (suc c₂) ⊔ c₁))  (c₂ ⊔ c₁)
SetsAop =
  record { Obj = YObj
         ; Hom = YHom
         ; _o_ = _+_
         ; _≈_ = _==_
         ; Id  = Yid
         ; isCategory = isSetsAop
         }

postulate extensionality1 : Relation.Binary.PropositionalEquality.Extensionality c₁ c₂

YonedaFunctor : Functor A SetsAop
YonedaFunctor = record {
         FObj = λ a → CF {a}
       ; FMap = λ f → y-nat f
       ; isFunctor = record {
             identity =  identity
             ; distr = distr1
             ; ≈-cong = ≈-cong
        } 
  } where
        ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → SetsAop [ y-nat f ≈ y-nat g ]
        ≈-cong {a} {b} {f} {g} eq =  let open ≈-Reasoning (A) in  -- (λ x g₁ → A [ f o g₁ ] ) ≡ (λ x g₁ → A [  g o  g₁ ] )
           extensionality1 ( λ x → extensionality (
             λ h →  ≈-≡  ( begin
                A [ f o h ]
             ≈⟨ resp refl-hom eq ⟩
                A [ g o h ]

          ) )  )
        identity : {a : Obj A} → SetsAop [ y-nat (id1 A a) ≈ id1 SetsAop (CF {a} )  ]
        identity  {a} =  let open ≈-Reasoning (A) in -- (λ x g → A [ id1 A a o g ] ) ≡ (λ a₁ x → x)
           extensionality1 ( λ x → extensionality (
             λ g →  ≈-≡  ( begin
                A [ id1 A a o g ] 
             ≈⟨ idL ⟩
                g

          ) )  )
        distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → SetsAop [ y-nat (A [ g o f ]) ≈ SetsAop [ y-nat g o y-nat f ] ]
        distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [  (A [ g o f]  o g₁ ]))) ≡ (λ x x₁ → A [  g o A [ f o x₁ ] ] )
           extensionality1 ( λ x → extensionality (
             λ h →  ≈-≡  ( begin
                A [ A [ g o f ]  o h ]
             ≈↑⟨ assoc  ⟩
                A [  g o A [ f o h ] ]

          ) )  )


------
--
--  F : A → Sets  ∈ Obj SetsAop
--
--  F(a) ⇔ Nat(h_a,F)
--      x ∈ F(a) , (g : Hom A b a)  → ( FMap F g ) x
------

F2Natmap :  {a : Obj A} → {F : Obj SetsAop} → {x : FObj F a} → (b : Obj (Category.op A)) → Hom Sets (FObj (CF {a}) b) (FObj F b)
F2Natmap {a} {F} {x} b = λ ( g : Hom A b a ) → ( FMap F g ) x

F2Nat : {a : Obj A} → {F : Obj SetsAop} →  FObj F a  → Hom SetsAop (CF {a}) F
F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} {x} ; isNTrans = isNTrans1 } where
   commute1 : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} (g : Hom A  a₁ a) →
                (Sets [ FMap F f o  FMap F g ]) x ≡ FMap F (A [ g o  f ] ) x
   commute1 g =  let open ≈-Reasoning (Sets) in
            cong ( λ f → f x ) ( sym ( distr F )  )
   commute : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} → 
        Sets [ Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ] ≈ Sets [ F2Natmap {a} {F} {x} b o FMap CF f ] ]
   commute {a₁} {b} {f} =  let open ≈-Reasoning (Sets) in
             begin
                Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ]
             ≈⟨⟩
                Sets [ FMap F f o (λ ( g : Hom A a₁ a ) → ( FMap F g ) x) ]
             ≈⟨ extensionality ( λ (g : Hom A  a₁ a) → commute1 {a₁} {b} {f} g ) ⟩
                Sets [  (λ ( g : Hom A b a ) → ( FMap F g ) x) o FMap CF f ] 
             ≈⟨⟩
                Sets [ F2Natmap {a} {F} {x} b o FMap CF f ] 

   isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) F (F2Natmap {a} {F})
   isNTrans1 = record { commute = λ {a₁ b f}  →  commute {a₁} {b} {f} } 


Nat2F : {a : Obj A} → {F : Obj SetsAop} →  Hom SetsAop (CF {a}) F  → FObj F a 
Nat2F {a} {F} ha =  ( TMap ha a ) (id1 A a)

F2Nat→Nat2F : {a : Obj A } → {F : Obj SetsAop} → (fa : FObj F a) →  Nat2F {a} {F} (F2Nat {a} {F} fa) ≡ fa 
-- FMap F (Category.Category.Id A) fa ≡ fa
F2Nat→Nat2F {a} {F} fa = let open ≈-Reasoning (Sets) in cong ( λ f → f fa ) (
             begin
               ( FMap F (id1 A _ )) 
             ≈⟨ IsFunctor.identity (isFunctor F)    ⟩
                id1 Sets (FObj F a)
             ∎ )

open  import  Relation.Binary.PropositionalEquality

postulate extensionality2 : Relation.Binary.PropositionalEquality.Extensionality  c₁ c₂ 
postulate extensionality3 : Relation.Binary.PropositionalEquality.Extensionality  c₂ c₂

Nat2F→F2Nat : {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (CF {a}) F) →  SetsAop [ F2Nat {a} {F} (Nat2F {a} {F} ha) ≈ ha ]
-- (λ b g → FMap F g (TMap ha a (Category.Category.Id A))) ≡ TMap ha
Nat2F→F2Nat {a} {F} ha = let open ≡-Reasoning in
             begin
                ( λ (b : Obj A ) → λ (g : Hom A b a ) → FMap F g (TMap ha a (Category.Category.Id A))  )
             ≡⟨ extensionality2 ( λ b → extensionality3 (λ g → lemma1 {a} {F} ha b g )) ⟩
                TMap ha   
             ∎ where
               lemma1 :  {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (CF {a}) F) →  (b : Obj A ) → (g : Hom A b a ) → 
                            FMap F g (TMap ha a (Category.Category.Id A)) ≡  TMap ha b g
               lemma1 {a} {F} ha b g =  ?

--     F :  op A → Sets
--     ha : NTrans (op A) Sets (CF {a}) F
--                FMap (CF {a}) g  o TMap ha a ≈   TMap ha b  o FMap F g