Mercurial > hg > Members > kono > Proof > category
view system-f.agda @ 334:357d3114c9b5
add : Int X -> Int X -> Int X
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Mar 2014 18:34:13 +0700 |
parents | 26f44a4fa494 |
children | 45130bd669ca |
line wrap: on
line source
open import Level open import Relation.Binary.PropositionalEquality module system-f where Bool : {l : Level} (X : Set l) -> Set l Bool = \{l : Level} -> \(X : Set l) -> X -> X -> X T : {l : Level} (X : Set l) -> Bool X T X = \(x y : X) -> x F : {l : Level} (X : Set l) -> Bool X F X = \(x y : X) -> y D : {l : Level} -> {U : Set l} -> U -> U -> Bool U -> U D u v t = t u v lemma04 : {l : Level} { U : Set l} {u v : U} -> D {_} {U} u v (T U ) ≡ u lemma04 = refl lemma05 : {l : Level} { U : Set l} {u v : U} -> D {_} {U} u v (F U ) ≡ v lemma05 = refl _×_ : {l : Level} -> Set l -> Set l -> Set (suc l) _×_ {l} U V = {X : Set l} -> (U -> V -> X) -> X <_,_> : {l : Level} {U V : Set l} -> U -> V -> (U × V) <_,_> {l} {U} {V} u v = \{X} -> \(x : U -> V -> X) -> x u v π1 : {l : Level} {U V : Set l} -> (U × V) -> U π1 {l} {U} {V} t = t {U} (\(x : U) -> \(y : V) -> x) π2 : {l : Level} {U V : Set l} -> (U × V) -> V π2 {l} {U} {V} t = t {V} (\(x : U) -> \(y : V) -> y) lemma06 : {l : Level} {U V : Set l } -> {u : U } -> {v : V} -> π1 ( < u , v > ) ≡ u lemma06 = refl lemma07 : {l : Level} {U V : Set l } -> {u : U } -> {v : V} -> π2 ( < u , v > ) ≡ v lemma07 = refl hoge : {l : Level} {U V : Set l} -> U -> V -> (U × V) hoge u v = < u , v > -- lemma08 : (t : U × V) -> < π1 t , π2 t > ≡ t -- lemma08 t = {!!} -- Emp definision is still wrong... Emp : {l : Level} {X : Set l} -> Set l Emp {l} = \{X : Set l} -> X -- ε : {l : Level} (U : Set l) {l' : Level} {U' : Set l'} -> Emp -> Emp -- ε {l} U t = t -- lemma09 : {l : Level} {U : Set l} {l' : Level} {U' : Set l} -> (t : Emp {l} {U} ) -> ε U (ε Emp t) ≡ ε U t -- lemma09 t = refl -- lemma10 : {l : Level} {U V X : Set l} -> (t : Emp {_} {U × V}) -> U × V -- lemma10 {l} {U} {V} t = ε (U × V) t -- lemma10' : {l : Level} {U V X : Set l} -> (t : Emp {_} {U × V}) -> Emp -- lemma10' {l} {U} {V} {X} t = ε (U × V) t -- lemma100 : {l : Level} {U V X : Set l} -> (t : Emp {_} {U}) -> Emp -- lemma100 {l} {U} {V} t = ε U t -- lemma101 : {l k : Level} {U V : Set l} -> (t : Emp {_} {U × V}) -> π1 (ε (U × V) t) ≡ ε U t -- lemma101 t = refl -- lemma102 : {l k : Level} {U V : Set l} -> (t : Emp {_} {U × V}) -> π2 (ε (U × V) t) ≡ ε V t -- lemma102 t = refl -- lemma103 : {l : Level} {U V : Set l} -> (u : U) -> (t : Emp {l} {_} ) -> (ε (U -> V) t) u ≡ ε V t -- lemma103 u t = refl _+_ : {l : Level} -> Set l -> Set l -> Set (suc l) _+_ {l} U V = {X : Set l} -> ( U -> X ) -> (V -> X) -> X ι1 : {l : Level } {U V : Set l} -> U -> U + V ι1 {l} {U} {V} u = \{X} -> \(x : U -> X) -> \(y : V -> X ) -> x u ι2 : {l : Level } {U V : Set l} -> V -> U + V ι2 {l} {U} {V} v = \{X} -> \(x : U -> X) -> \(y : V -> X ) -> y v δ : {l : Level} { U V R S : Set l } -> (R -> U) -> (S -> U) -> ( R + S ) -> U δ {l} {U} {V} {R} {S} u v t = t {U} (\(x : R) -> u x) ( \(y : S) -> v y) lemma11 : {l : Level} { U V R S : Set _ } -> (u : R -> U ) (v : S -> U ) -> (r : R) -> δ {l} {U} {V} {R} {S} u v ( ι1 r ) ≡ u r lemma11 u v r = refl lemma12 : {l : Level} { U V R S : Set _ } -> (u : R -> U ) (v : S -> U ) -> (s : S) -> δ {l} {U} {V} {R} {S} u v ( ι2 s ) ≡ v s lemma12 u v s = refl _××_ : {l : Level} -> Set (suc l) -> Set l -> Set (suc l) _××_ {l} U V = {X : Set l} -> (U -> V -> X) -> X <<_,_>> : {l : Level} {U : Set (suc l) } {V : Set l} -> U -> V -> (U ×× V) <<_,_>> {l} {U} {V} u v = \{X} -> \(x : U -> V -> X) -> x u v Int : {l : Level } ( X : Set l ) -> Set l Int {l} X = X -> ( X -> X ) -> X Zero : {l : Level } -> { X : Set l } -> Int X Zero {l} {X} = \(x : X ) -> \(y : X -> X ) -> x S : {l : Level } -> { X : Set l } -> Int X -> Int X S {l} {X} t = \(x : X) -> \(y : X -> X ) -> y ( t x y ) n0 : {l : Level} {X : Set l} -> Int X n0 = Zero n1 : {l : Level } -> { X : Set l } -> Int X n1 {_} {X} = \(x : X ) -> \(y : X -> X ) -> y x n2 : {l : Level } -> { X : Set l } -> Int X n2 {_} {X} = \(x : X ) -> \(y : X -> X ) -> y (y x) n3 : {l : Level } -> { X : Set l } -> Int X n3 {_} {X} = \(x : X ) -> \(y : X -> X ) -> y (y (y x)) n4 : {l : Level } -> { X : Set l } -> Int X n4 {_} {X} = \(x : X ) -> \(y : X -> X ) -> y (y (y (y x))) lemma13 : {l : Level } -> { X : Set l } -> S (S (Zero {_} {X})) ≡ n2 lemma13 = refl It : {l : Level} {U : Set l} -> U -> ( U -> U ) -> Int U -> U It {l} {U} u f t = t u f R : {l : Level} { U X : Set l} -> U -> ( U -> Int X -> U ) -> Int _ -> U R {l} {U} {X} u v t = π1 ( It {suc l} {U × Int X} (< u , Zero >) (λ (x : U × Int X) → < v (π1 x) (π2 x) , S (π2 x) > ) t ) add : {l : Level} {X : Set l} -> Int X -> Int X -> Int X add x y = \z t -> x (y z t) t mul : {l : Level } {X : Set l} -> Int X -> Int (Int X) -> Int X mul {l} {X} x y = It Zero (add x) y fact : {l : Level} {X : Set l} -> Int _ -> Int X fact {l} {X} n = R (S Zero) (λ z -> λ w -> mul z (S w) ) n lemma13' : {l : Level} {X : Set l} -> fact {l} {X} n4 ≡ mul n4 ( mul n2 n3) lemma13' = refl -- lemma14 : {l : Level} {X : Set l} -> (x y : Int X) -> mul x y ≡ mul y x -- lemma14 x y = It {!!} {!!} {!!} lemma15 : {l : Level} {X : Set l} (x y : Int X) -> mul {l} {X} n2 n3 ≡ mul {l} {X} n3 n2 lemma15 x y = refl lemma16 : {l : Level} {X U : Set l} -> (u : U ) -> (v : U -> Int X -> U ) -> R u v Zero ≡ u lemma16 u v = refl -- lemma17 : {l : Level} {X U : Set l} -> (u : U ) -> (v : U -> Int -> U ) -> (t : Int ) -> R u v (S t) ≡ v ( R u v t ) t -- lemma17 u v t = refl -- postulate lemma17 : {l : Level} {X U : Set l} -> (u : U ) -> (v : U -> Int -> U ) -> (t : Int ) -> R u v (S t) ≡ v ( R u v t ) t List : {l : Level} (U X : Set l) -> Set l List {l} = \( U X : Set l) -> X -> ( U -> X -> X ) -> X Nil : {l : Level} {U : Set l} {X : Set l} -> List U X Nil {l} {U} {X} = \(x : X) -> \(y : U -> X -> X) -> x Cons : {l : Level} {U : Set l} {X : Set l} -> U -> List U X -> List U X Cons {l} {U} {X} u t = \(x : X) -> \(y : U -> X -> X) -> y u (t x y ) l0 : {l : Level} {X X' : Set l} -> List (Int X) (X') l0 = Nil l1 : {l : Level} {X X' : Set l} -> List (Int X) (X') l1 = Cons n1 Nil l2 : {l : Level} {X X' : Set l} -> List (Int X) (X') l2 = Cons n2 l1 l3 : {l : Level} {X X' : Set l} -> List (Int X) (X') l3 = Cons n3 l2 ListIt : {l : Level} {U W X : Set l} -> W -> ( U -> W -> W ) -> List U W -> W ListIt w f t = t w f Nullp : {l : Level} {U : Set (suc l)} { X : Set (suc l)} -> List U (Bool X) -> Bool _ Nullp {l} {U} {X} list = ListIt {suc l} {U} {Bool _} {X} (T X) (\u w -> (F X)) list Append : {l : Level} {U : Set l} {X : Set l} -> List U _ -> List U X -> List U _ Append x y = \s t -> x (y s t) t lemma18 :{l : Level} {U : Set l} {X : Set l} -> Append {_} {Int U} {X} l1 l2 ≡ Cons n1 (Cons n2 (Cons n1 Nil)) lemma18 = refl Reverse : {l : Level} {U : Set l} {X : Set l} -> List U _ -> List U X Reverse {l} {U} {X} x = ListIt {_} {U} {List U _} {X} Nil ( \u w -> Append w (Cons u Nil) ) x lemma19 :{l : Level} {U : Set l} {X : Set l} -> Reverse {_} {Int U} {X} l3 ≡ Cons n1 (Cons n2 (Cons n3 Nil)) lemma19 = refl Tree : {l : Level} -> Set l -> Set l -> Set l Tree {l} = \( U X : Set l) -> X -> ( (U -> X) -> X ) -> X NilTree : {l : Level} (U : Set l) (X : Set l) -> Tree U X NilTree U X = \(x : X) -> \(y : (U -> X) -> X) -> x Collect : {l : Level} (U : Set l) (X : Set l) -> (U -> X -> ((U -> X) -> X) -> X ) -> Tree U X Collect U X f = \(x : X) -> \(y : (U -> X) -> X) -> y (\(z : U) -> f z x y ) TreeIt : {l : Level} {U W X : Set l} -> W -> ( (U -> W) -> W ) -> Tree U W -> W TreeIt w h t = t w h