Mercurial > hg > Members > kono > Proof > category
view comparison-functor.agda @ 822:4c0580d9dda4
from cart to graph, hom equality to set equality
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 May 2019 21:16:58 +0900 |
parents | a5f2ca67e7c5 |
children |
line wrap: on
line source
-- -- -- -- -- -- -- -- -- Comparison Functor of Kelisli Category -- defines U_K and F_K as a resolution of Monad -- checks Adjointness -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> -- -- -- -- -- -- -- -- open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat open import Relation.Binary.Core module comparison-functor { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { M' : IsMonad A T η μ } {c₁' c₂' ℓ' : Level} ( B : Category c₁' c₂' ℓ' ) { U_K : Functor B A } { F_K : Functor A B } { η_K : NTrans A A identityFunctor ( U_K ○ F_K ) } { ε_K : NTrans B B ( F_K ○ U_K ) identityFunctor } { μ_K' : NTrans A A (( U_K ○ F_K ) ○ ( U_K ○ F_K )) ( U_K ○ F_K ) } ( AdjK : IsAdjunction A B U_K F_K η_K ε_K ) where open import adj-monad T_K = U_K ○ F_K μ_K : NTrans A A (( U_K ○ F_K ) ○ ( U_K ○ F_K )) ( U_K ○ F_K ) μ_K = UεF A B U_K F_K ε_K M : IsMonad A (U_K ○ F_K ) η_K μ_K M = Monad.isMonad ( Adj2Monad A B ( record { U = U_K; F = F_K ; η = η_K ; ε = ε_K ; isAdjunction = AdjK } ) ) open import kleisli {c₁} {c₂} {ℓ} {A} { U_K ○ F_K } { η_K } { μ_K } { M } open Functor open NTrans open KleisliHom open Adjunction open MResolution kfmap : {a b : Obj A} (f : KHom a b) → Hom B (FObj F_K a) (FObj F_K b) kfmap {_} {b} f = B [ TMap ε_K (FObj F_K b) o FMap F_K (KMap f) ] K_T : Functor KleisliCategory B K_T = record { FObj = FObj F_K ; FMap = kfmap ; isFunctor = record { ≈-cong = ≈-cong ; identity = identity ; distr = distr1 } } where identity : {a : Obj A} → B [ kfmap (K-id {a}) ≈ id1 B (FObj F_K a) ] identity {a} = let open ≈-Reasoning (B) in begin kfmap (K-id {a}) ≈⟨⟩ TMap ε_K (FObj F_K a) o FMap F_K (KMap (K-id {a})) ≈⟨⟩ TMap ε_K (FObj F_K a) o FMap F_K (TMap η_K a) ≈⟨ IsAdjunction.adjoint2 AdjK ⟩ id1 B (FObj F_K a) ∎ ≈-cong : {a b : Obj A} → {f g : KHom a b} → A [ KMap f ≈ KMap g ] → B [ kfmap f ≈ kfmap g ] ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (B) in begin kfmap f ≈⟨⟩ TMap ε_K (FObj F_K b) o FMap F_K (KMap f) ≈⟨ cdr ( fcong F_K f≈g) ⟩ TMap ε_K (FObj F_K b) o FMap F_K (KMap g) ≈⟨⟩ kfmap g ∎ distr1 : {a b c : Obj A} {f : KHom a b} {g : KHom b c} → B [ kfmap (g * f) ≈ (B [ kfmap g o kfmap f ] )] distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (B) in begin kfmap (g * f) ≈⟨⟩ TMap ε_K (FObj F_K c) o FMap F_K (KMap (g * f)) ≈⟨⟩ TMap ε_K (FObj F_K c) o FMap F_K (A [ TMap μ_K c o A [ FMap ( U_K ○ F_K ) (KMap g) o KMap f ] ] ) ≈⟨ cdr ( distr F_K ) ⟩ TMap ε_K (FObj F_K c) o ( FMap F_K (TMap μ_K c) o ( FMap F_K (A [ FMap ( U_K ○ F_K ) (KMap g) o KMap f ]))) ≈⟨ cdr (cdr ( distr F_K )) ⟩ TMap ε_K (FObj F_K c) o ( FMap F_K (TMap μ_K c) o (( FMap F_K (FMap ( U_K ○ F_K ) (KMap g))) o (FMap F_K (KMap f)))) ≈⟨ cdr assoc ⟩ TMap ε_K (FObj F_K c) o ((( FMap F_K (TMap μ_K c) o ( FMap F_K (FMap (U_K ○ F_K) (KMap g))))) o (FMap F_K (KMap f))) ≈⟨⟩ TMap ε_K (FObj F_K c) o (( FMap F_K ( FMap U_K ( TMap ε_K ( FObj F_K c ) )) o ( FMap F_K (FMap (U_K ○ F_K) (KMap g)))) o (FMap F_K (KMap f))) ≈⟨ sym (cdr assoc) ⟩ TMap ε_K (FObj F_K c) o (( FMap F_K ( FMap U_K ( TMap ε_K ( FObj F_K c ) ))) o (( FMap F_K (FMap (U_K ○ F_K) (KMap g))) o (FMap F_K (KMap f)))) ≈⟨ assoc ⟩ (TMap ε_K (FObj F_K c) o ( FMap F_K ( FMap U_K ( TMap ε_K ( FObj F_K c ) )))) o (( FMap F_K (FMap (U_K ○ F_K) (KMap g))) o (FMap F_K (KMap f))) ≈⟨ car (sym (nat ε_K)) ⟩ (TMap ε_K (FObj F_K c) o ( TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c)))) o (( FMap F_K (FMap (U_K ○ F_K) (KMap g))) o (FMap F_K (KMap f))) ≈⟨ sym assoc ⟩ TMap ε_K (FObj F_K c) o (( TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c))) o ((( FMap F_K (FMap (U_K ○ F_K) (KMap g)))) o (FMap F_K (KMap f)))) ≈⟨ cdr assoc ⟩ TMap ε_K (FObj F_K c) o ((( TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c))) o (( FMap F_K (FMap (U_K ○ F_K) (KMap g))))) o (FMap F_K (KMap f))) ≈⟨ cdr ( car ( begin TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c)) o ((FMap F_K (FMap (U_K ○ F_K) (KMap g)))) ≈⟨⟩ TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c)) o (FMap (F_K ○ U_K) (FMap F_K (KMap g))) ≈⟨ sym (nat ε_K) ⟩ ( FMap F_K (KMap g)) o (TMap ε_K (FObj F_K b)) ∎ )) ⟩ TMap ε_K (FObj F_K c) o ((( FMap F_K (KMap g)) o (TMap ε_K (FObj F_K b))) o FMap F_K (KMap f)) ≈⟨ cdr (sym assoc) ⟩ TMap ε_K (FObj F_K c) o (( FMap F_K (KMap g)) o (TMap ε_K (FObj F_K b) o FMap F_K (KMap f))) ≈⟨ assoc ⟩ (TMap ε_K (FObj F_K c) o FMap F_K (KMap g)) o (TMap ε_K (FObj F_K b) o FMap F_K (KMap f)) ≈⟨⟩ kfmap g o kfmap f ∎ Lemma-K1 : {a b : Obj A} ( f : Hom A a b ) → B [ FMap K_T ( FMap F_T f) ≈ FMap F_K f ] Lemma-K1 {a} {b} f = let open ≈-Reasoning (B) in begin FMap K_T ( FMap F_T f) ≈⟨⟩ TMap ε_K (FObj F_K b) o FMap F_K (KMap( FMap F_T f)) ≈⟨⟩ TMap ε_K (FObj F_K b) o FMap F_K (A [ TMap η_K b o f ]) ≈⟨ cdr ( distr F_K) ⟩ TMap ε_K (FObj F_K b) o (FMap F_K (TMap η_K b) o FMap F_K f ) ≈⟨ assoc ⟩ (TMap ε_K (FObj F_K b) o FMap F_K (TMap η_K b)) o FMap F_K f ≈⟨ car ( IsAdjunction.adjoint2 AdjK) ⟩ id1 B (FObj F_K b) o FMap F_K f ≈⟨ idL ⟩ FMap F_K f ∎ Lemma-K2 : {a b : Obj A} ( f : KHom a b ) → A [ FMap U_K ( FMap K_T f) ≈ FMap U_T f ] Lemma-K2 {a} {b} f = let open ≈-Reasoning (A) in begin FMap U_K ( FMap K_T f) ≈⟨⟩ FMap U_K ( B [ TMap ε_K (FObj F_K b) o FMap F_K (KMap f) ] ) ≈⟨ distr U_K ⟩ FMap U_K ( TMap ε_K (FObj F_K b)) o FMap U_K (FMap F_K (KMap f) ) ≈⟨⟩ TMap μ_K b o FMap T_K (KMap f) ≈⟨⟩ -- the definition FMap U_T f ∎ Lemma-K3 : (b : Obj A) → B [ FMap K_T (record { KMap = (TMap η_K b) }) ≈ id1 B (FObj F_K b) ] Lemma-K3 b = let open ≈-Reasoning (B) in begin FMap K_T (record { KMap = (TMap η_K b) }) ≈⟨⟩ TMap ε_K (FObj F_K b) o FMap F_K (TMap η_K b) ≈⟨ IsAdjunction.adjoint2 AdjK ⟩ id1 B (FObj F_K b) ∎ Lemma-K4 : (b c : Obj A) (g : Hom A b (FObj T_K c)) → B [ FMap K_T ( record { KMap = A [ (TMap η_K (FObj T_K c)) o g ] }) ≈ FMap F_K g ] Lemma-K4 b c g = let open ≈-Reasoning (B) in begin FMap K_T ( record { KMap = A [ (TMap η_K (FObj T_K c)) o g ] }) ≈⟨⟩ TMap ε_K (FObj F_K (FObj T_K c)) o FMap F_K (A [ (TMap η_K (FObj T_K c)) o g ]) ≈⟨ cdr (distr F_K) ⟩ TMap ε_K (FObj F_K (FObj T_K c)) o ( FMap F_K (TMap η_K (FObj T_K c)) o FMap F_K g ) ≈⟨ assoc ⟩ (TMap ε_K (FObj F_K (FObj T_K c)) o ( FMap F_K (TMap η_K (FObj T_K c)))) o FMap F_K g ≈⟨ car ( IsAdjunction.adjoint2 AdjK) ⟩ id1 B (FObj F_K (FObj T_K c)) o FMap F_K g ≈⟨ idL ⟩ FMap F_K g ∎ -- Lemma-K5 : (a : Obj A) → FObj U_K ( FObj K_T a ) = U_T a Lemma-K6 : (b c : Obj A) (g : KHom b c) → A [ FMap U_K ( FMap K_T g ) ≈ FMap U_T g ] Lemma-K6 b c g = let open ≈-Reasoning (A) in begin FMap U_K ( FMap K_T g ) ≈⟨⟩ FMap U_K ( B [ TMap ε_K ( FObj F_K c ) o FMap F_K (KMap g) ] ) ≈⟨ distr U_K ⟩ FMap U_K ( TMap ε_K ( FObj F_K c )) o FMap U_K ( FMap F_K (KMap g) ) ≈⟨⟩ TMap μ_K c o FMap U_K ( FMap F_K (KMap g) ) ≈⟨⟩ FMap U_T g ∎