Mercurial > hg > Members > kono > Proof > category
view deductive.agda @ 822:4c0580d9dda4
from cart to graph, hom equality to set equality
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 May 2019 21:16:58 +0900 |
parents | 82a8c1ab4ef5 |
children | 6c5cfb9b333e 8c2da34e8dc1 |
line wrap: on
line source
open import Level open import Category module deductive {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where -- Deduction Theorem -- positive logic record PositiveLogic {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field ⊤ : Obj A ○ : (a : Obj A ) → Hom A a ⊤ _∧_ : Obj A → Obj A → Obj A <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b) π : {a b : Obj A } → Hom A (a ∧ b) a π' : {a b : Obj A } → Hom A (a ∧ b) b _<=_ : (a b : Obj A ) → Obj A _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a module deduction-theorem ( L : PositiveLogic A ) where open PositiveLogic L _・_ = _[_o_] A -- every proof b → c with assumption a has following forms data φ {a : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁ ⊔ c₂ ) where i : {b c : Obj A} {k : Hom A b c } → φ x k ii : φ x {⊤} {a} x iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c' ∧ c''} < f , g > iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < π ・ π , < π' ・ π , π' > > -- genetate (a ∧ b) → c proof from proof b → c with assumption a kx∈a : {a b c : Obj A } → ( x : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x z ) → Hom A (a ∧ b) c kx∈a x {k} i = k ・ π' kx∈a x ii = π kx∈a x (iii ψ χ ) = < kx∈a x ψ , kx∈a x χ > kx∈a x (iv ψ χ ) = kx∈a x ψ ・ < π , kx∈a x χ > kx∈a x (v ψ ) = ( kx∈a x ψ ・ α ) *