Mercurial > hg > Members > kono > Proof > category
view limit-to.agda @ 822:4c0580d9dda4
from cart to graph, hom equality to set equality
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 May 2019 21:16:58 +0900 |
parents | 82a8c1ab4ef5 |
children | 8f41ad966eaa |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level module limit-to where open import cat-utility open import HomReasoning open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality hiding ([_]) open import discrete --- Equalizer from Limit ( 2→A IdnexFunctor Γ and IndexNat : K → Γ) --- --- --- f --- e -----→ --- c -----→ a b A --- ^ / -----→ --- |k h g --- | / --- | / ^ --- | / | --- |/ | Γ --- d _ | --- |\ | --- \ K af --- \ -----→ --- \ t0 t1 I --- -----→ --- ag --- --- open Complete open Limit open IsLimit open NTrans -- Functor Γ : TwoCat → A IndexFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( a b : Obj A) ( f g : Hom A a b ) → Functor (TwoCat ) A IndexFunctor {c₁} {c₂} {ℓ} A a b f g = record { FObj = λ a → fobj a ; FMap = λ {a} {b} f → fmap {a} {b} f ; isFunctor = record { identity = λ{x} → identity x ; distr = λ {a} {b} {c} {f} {g} → distr1 {a} {b} {c} {f} {g} ; ≈-cong = λ {a} {b} {c} {f} → ≈-cong {a} {b} {c} {f} } } where T = TwoCat fobj : Obj T → Obj A fobj t0 = a fobj t1 = b fmap : {x y : Obj T } → (Hom T x y ) → Hom A (fobj x) (fobj y) fmap {t0} {t0} id-t0 = id1 A a fmap {t1} {t1} id-t1 = id1 A b fmap {t0} {t1} arrow-f = f fmap {t0} {t1} arrow-g = g ≈-cong : {a : Obj T} {b : Obj T} {f g : Hom T a b} → T [ f ≈ g ] → A [ fmap f ≈ fmap g ] ≈-cong {a} {b} {f} {_} refl = let open ≈-Reasoning A in refl-hom identity : (x : Obj T ) → A [ fmap (id1 T x) ≈ id1 A (fobj x) ] identity t0 = let open ≈-Reasoning A in refl-hom identity t1 = let open ≈-Reasoning A in refl-hom distr1 : {a : Obj T} {b : Obj T} {c : Obj T} {f : Hom T a b} {g : Hom T b c} → A [ fmap (T [ g o f ]) ≈ A [ fmap g o fmap f ] ] distr1 {t0} {t0} {t0} {id-t0 } { id-t0 } = let open ≈-Reasoning A in sym-hom idL distr1 {t1} {t1} {t1} { id-t1 } { id-t1 } = let open ≈-Reasoning A in begin id b ≈↑⟨ idL ⟩ id b o id b ∎ distr1 {t0} {t0} {t1} { id-t0 } { arrow-f } = let open ≈-Reasoning A in begin fmap (T [ arrow-f o id-t0 ] ) ≈⟨⟩ fmap arrow-f ≈↑⟨ idR ⟩ fmap arrow-f o id a ∎ distr1 {t0} {t0} {t1} { id-t0 } { arrow-g } = let open ≈-Reasoning A in begin fmap (T [ arrow-g o id-t0 ] ) ≈⟨⟩ fmap arrow-g ≈↑⟨ idR ⟩ fmap arrow-g o id a ∎ distr1 {t0} {t1} {t1} { arrow-f } { id-t1 } = let open ≈-Reasoning A in begin fmap (T [ id-t1 o arrow-f ] ) ≈⟨⟩ fmap arrow-f ≈↑⟨ idL ⟩ id b o fmap arrow-f ∎ distr1 {t0} {t1} {t1} { arrow-g } { id-t1 } = let open ≈-Reasoning A in begin fmap (T [ id-t1 o arrow-g ] ) ≈⟨⟩ fmap arrow-g ≈↑⟨ idL ⟩ id b o fmap arrow-g ∎ --- Nat for Limit -- -- Nat : K → IndexFunctor -- open Functor IndexNat : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → {a b : Obj A} (f g : Hom A a b ) (d : Obj A) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans TwoCat A (K TwoCat A d) (IndexFunctor {c₁} {c₂} {ℓ} A a b f g) IndexNat {c₁} {c₂} {ℓ} A {a} {b} f g d h fh=gh = record { TMap = λ x → nmap x d h ; isNTrans = record { commute = λ {x} {y} {f'} → commute1 {x} {y} {f'} d h fh=gh } } where I = TwoCat Γ : Functor I A Γ = IndexFunctor {c₁} {c₂} {ℓ} A a b f g nmap : (x : Obj I ) ( d : Obj (A) ) (h : Hom A d a ) → Hom A (FObj (K I A d) x) (FObj Γ x) nmap t0 d h = h nmap t1 d h = A [ f o h ] commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K I A d) f' ] ] commute1 {t0} {t1} {arrow-f} d h fh=gh = let open ≈-Reasoning A in begin f o h ≈↑⟨ idR ⟩ (f o h ) o id d ∎ commute1 {t0} {t1} {arrow-g} d h fh=gh = let open ≈-Reasoning A in begin g o h ≈↑⟨ fh=gh ⟩ f o h ≈↑⟨ idR ⟩ (f o h ) o id d ∎ commute1 {t0} {t0} {id-t0} d h fh=gh = let open ≈-Reasoning A in begin id a o h ≈⟨ idL ⟩ h ≈↑⟨ idR ⟩ h o id d ∎ commute1 {t1} {t1} {id-t1} d h fh=gh = let open ≈-Reasoning A in begin id b o ( f o h ) ≈⟨ idL ⟩ f o h ≈↑⟨ idR ⟩ ( f o h ) o id d ∎ equlimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A} → (f g : Hom A a b) (lim : Limit TwoCat A (IndexFunctor A a b f g) ) → Hom A (a0 lim) a equlimit A {a} {b} f g lim = TMap (Limit.t0 lim) discrete.t0 lim-to-equ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → {a b : Obj A} (f g : Hom A a b ) (lim : Limit TwoCat A (IndexFunctor A a b f g) ) → IsEqualizer A (equlimit A f g lim) f g lim-to-equ {c₁} {c₂} {ℓ} A {a} {b} f g lim = record { fe=ge = fe=ge0 ; k = λ {d} h fh=gh → k {d} h fh=gh ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k' } where I : Category Level.zero Level.zero Level.zero I = TwoCat Γ : Functor I A Γ = IndexFunctor A a b f g e : Hom A (a0 lim) a e = equlimit A f g lim c : Obj A c = a0 lim inat : (d : Obj A) (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans I A (K I A d) Γ inat = IndexNat A f g fe=ge0 : A [ A [ f o (equlimit A f g lim ) ] ≈ A [ g o (equlimit A f g lim ) ] ] fe=ge0 = let open ≈-Reasoning A in begin f o (equlimit A f g lim ) ≈⟨⟩ FMap Γ arrow-f o TMap (Limit.t0 lim) discrete.t0 ≈⟨ IsNTrans.commute ( isNTrans (Limit.t0 lim)) {discrete.t0} {discrete.t1} {arrow-f} ⟩ TMap (Limit.t0 lim) discrete.t1 o FMap (K (TwoCat ) A (a0 lim)) id-t0 ≈↑⟨ IsNTrans.commute ( isNTrans (Limit.t0 lim)) {discrete.t0} {discrete.t1} {arrow-g} ⟩ FMap Γ arrow-g o TMap (Limit.t0 lim) discrete.t0 ≈⟨⟩ g o (equlimit A f g lim ) ∎ k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c k {d} h fh=gh = limit (isLimit lim) d (inat d h fh=gh ) ek=h : (d : Obj A ) (h : Hom A d a ) → ( fh=gh : A [ A [ f o h ] ≈ A [ g o h ] ] ) → A [ A [ e o k h fh=gh ] ≈ h ] ek=h d h fh=gh = let open ≈-Reasoning A in begin e o k h fh=gh ≈⟨⟩ TMap (Limit.t0 lim) discrete.t0 o k h fh=gh ≈⟨ t0f=t (isLimit lim) {d} {inat d h fh=gh } {discrete.t0} ⟩ TMap (inat d h fh=gh) discrete.t0 ≈⟨⟩ h ∎ uniq-nat : {i : Obj I} → (d : Obj A ) (h : Hom A d a ) ( k' : Hom A d c ) ( fh=gh : A [ A [ f o h ] ≈ A [ g o h ] ]) → A [ A [ e o k' ] ≈ h ] → A [ A [ TMap (Limit.t0 lim) i o k' ] ≈ TMap (inat d h fh=gh) i ] uniq-nat {t0} d h k' fh=gh ek'=h = let open ≈-Reasoning A in begin TMap (Limit.t0 lim) discrete.t0 o k' ≈⟨⟩ e o k' ≈⟨ ek'=h ⟩ h ≈⟨⟩ TMap (inat d h fh=gh) discrete.t0 ∎ uniq-nat {t1} d h k' fh=gh ek'=h = let open ≈-Reasoning A in begin TMap (Limit.t0 lim) t1 o k' ≈↑⟨ car (idR) ⟩ ( TMap (Limit.t0 lim) t1 o id c ) o k' ≈⟨⟩ ( TMap (Limit.t0 lim) t1 o FMap (K I A c) arrow-f ) o k' ≈↑⟨ car ( nat1 (Limit.t0 lim) arrow-f ) ⟩ ( FMap Γ arrow-f o TMap (Limit.t0 lim) discrete.t0 ) o k' ≈⟨⟩ (f o e ) o k' ≈↑⟨ assoc ⟩ f o ( e o k' ) ≈⟨ cdr ek'=h ⟩ f o h ≈⟨⟩ TMap (inat d h fh=gh) t1 ∎ uniquness : (d : Obj A ) (h : Hom A d a ) → ( fh=gh : A [ A [ f o h ] ≈ A [ g o h ] ] ) → ( k' : Hom A d c ) → A [ A [ e o k' ] ≈ h ] → A [ k h fh=gh ≈ k' ] uniquness d h fh=gh k' ek'=h = let open ≈-Reasoning A in begin k h fh=gh ≈⟨ limit-uniqueness (isLimit lim) ( λ{i} → uniq-nat {i} d h k' fh=gh ek'=h ) ⟩ k' ∎ --- Product from Limit ( given Discrete→A functor Γ and pnat : K → Γ) open import Relation.Binary.PropositionalEquality open DiscreteHom plimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (S : Set c₁) → ( Γ : Functor (DiscreteCat S ) A ) → (lim : Limit ( DiscreteCat S ) A Γ ) → Obj A plimit A S Γ lim = a0 lim discrete-identity : { c₁ : Level} { S : Set c₁} { a : S } → (f : DiscreteHom a a ) → (DiscreteCat S) [ f ≈ id1 (DiscreteCat S) a ] discrete-identity f = refl pnat : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (S : Set c₁) → (Γ : Functor (DiscreteCat S) A ) → {q : Obj A } ( qi : (i : Obj ( DiscreteCat S)) → Hom A q (FObj Γ i) ) → NTrans (DiscreteCat S )A (K (DiscreteCat S) A q) Γ pnat A S Γ {q} qi = record { TMap = qi ; isNTrans = record { commute = λ {a} {b} {f} → commute {a} {b} {f} } } where commute : {a b : Obj (DiscreteCat S) } {f : Hom (DiscreteCat S) a b} → A [ A [ FMap Γ f o qi a ] ≈ A [ qi b o FMap (K (DiscreteCat S) A q) f ] ] commute {a} {b} {f} with discrete f commute {a} {.a} {f} | refl = let open ≈-Reasoning A in begin FMap Γ f o qi a ≈⟨ car ( fcong Γ (discrete-identity f )) ⟩ FMap Γ (id1 (DiscreteCat S) a ) o qi a ≈⟨ car ( IsFunctor.identity (isFunctor Γ) ) ⟩ id1 A (FObj Γ a) o qi a ≈⟨ idL ⟩ qi a ≈↑⟨ idR ⟩ qi a o id q ≈⟨⟩ qi a o FMap (K (DiscreteCat S) A q) f ∎ lim-to-product : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( S : Set c₁ ) → ( Γ : Functor (DiscreteCat S) A ) -- could be constructed from S → Obj A → (lim : Limit (DiscreteCat S) A Γ ) → IProduct (Obj (DiscreteCat S)) A (FObj Γ) lim-to-product A S Γ lim = record { iprod = plimit A S Γ lim ; pi = λ i → TMap (Limit.t0 lim) i ; isIProduct = record { iproduct = λ {q} qi → iproduct {q} qi ; pif=q = λ {q} {qi} {i} → pif=q {q} qi {i} ; ip-uniqueness = λ {q } { h } → ip-uniqueness {q} {h} ; ip-cong = λ {q } { qi } { qi' } qi=qi' → ip-cong {q} {qi} {qi'} qi=qi' } } where D = DiscreteCat S I = Obj ( DiscreteCat S ) ai = λ i → FObj Γ i p = a0 lim pi = λ i → TMap (Limit.t0 lim) i iproduct : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p iproduct {q} qi = limit (isLimit lim) q (pnat A S Γ qi ) pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( iproduct qi ) ] ≈ (qi i) ] pif=q {q} qi {i} = t0f=t (isLimit lim) {q} {pnat A S Γ qi } {i} ipu : {i : Obj D} → (q : Obj A) (h : Hom A q p ) → A [ A [ TMap (Limit.t0 lim) i o h ] ≈ A [ pi i o h ] ] ipu {i} q h = let open ≈-Reasoning A in refl-hom ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ iproduct ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] ip-uniqueness {q} {h} = limit-uniqueness (isLimit lim) {q} {pnat A S Γ (λ i → A [ pi i o h ] )} (ipu q h) ipc : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } → (i : I ) → A [ qi i ≈ qi' i ] → A [ A [ TMap (Limit.t0 lim) i o iproduct qi' ] ≈ TMap (pnat A S Γ qi) i ] ipc {q} {qi} {qi'} i qi=qi' = let open ≈-Reasoning A in begin TMap (Limit.t0 lim) i o iproduct qi' ≈⟨⟩ TMap (Limit.t0 lim) i o limit (isLimit lim) q (pnat A S Γ qi' ) ≈⟨ t0f=t (isLimit lim) {q} {pnat A S Γ qi'} {i} ⟩ TMap (pnat A S Γ qi') i ≈⟨⟩ qi' i ≈↑⟨ qi=qi' ⟩ qi i ≈⟨⟩ TMap (pnat A S Γ qi) i ∎ ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ iproduct qi ≈ iproduct qi' ] ip-cong {q} {qi} {qi'} qi=qi' = limit-uniqueness (isLimit lim) {q} {pnat A S Γ qi} (λ {i} → ipc {q} {qi} {qi'} i (qi=qi' i))