Mercurial > hg > Members > kono > Proof > category
view code-data.agda @ 405:4c34c0e3c4bb
no Maybe TwoCat in limit-to
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 21 Mar 2016 12:44:43 +0900 |
parents | 71c817f28bc6 |
children | 3d41a8edbf63 |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat module code-data { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where -- DataObj is a set of code segment with reverse computation record DataObj : Set (c₁ ⊔ c₂ ⊔ ℓ) where field dom : Obj A codom : Obj A code : Hom A dom codom rev-code : Hom A codom dom id-left : A [ A [ code o rev-code ] ≈ id1 A codom ] id-right : A [ A [ rev-code o code ] ≈ id1 A dom ] open DataObj -- DataHom is a set of data segment with computational continuation record isDataHom (a : DataObj ) (b : DataObj ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field continuation : Hom A (codom a) (dom b) data-dom = a data-codom = b open isDataHom DataHom : (a : DataObj ) (b : DataObj ) → Set (c₁ ⊔ c₂ ⊔ ℓ) DataHom = λ a b → isDataHom a b DataId : { a : DataObj } → DataHom a a DataId {a} = record { continuation = rev-code a } _∙_ : {a b c : DataObj } → DataHom b c → DataHom a b → DataHom a c _∙_ {a} {b} {c} g f = record { continuation = A [ continuation g o A [ code b o continuation f ] ] } _≗_ : {a : DataObj } {b : DataObj } (f g : DataHom a b ) → Set ℓ _≗_ {a} {b} f g = A [ continuation f ≈ continuation g ] open import Relation.Binary.Core isDataCategory : IsCategory DataObj DataHom _≗_ _∙_ DataId isDataCategory = record { isEquivalence = isEquivalence ; identityL = \{a} {b} {f} -> identityL a b f ; identityR = \{a} {b} {f} -> identityR a b f ; o-resp-≈ = \{a} {b} {c} {f} {g} {h} {i} -> o-resp {a} {b} {c} {f} {g} {h} {i} ; associative = \{a} {b} {c} {d} {f} {g} {h} -> associative a b c d f g h } where open ≈-Reasoning (A) o-resp : {A B C : DataObj} {f g : DataHom A B} {h i : DataHom B C} → f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) o-resp {a} {b} {c} {f} {g} {h} {i} f≗g h≗i = begin continuation (h ∙ f) ≈⟨⟩ continuation h o code b o continuation f ≈⟨ cdr ( cdr ( f≗g )) ⟩ continuation h o code b o continuation g ≈⟨ car h≗i ⟩ continuation i o code b o continuation g ≈⟨⟩ continuation (i ∙ g) ∎ associative : (a b c d : DataObj) (f : DataHom c d) (g : DataHom b c) (h : DataHom a b) → (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) associative a b c d f g h = begin continuation (f ∙ (g ∙ h)) ≈⟨⟩ continuation f o code c o continuation g o code b o continuation h ≈⟨ cdr assoc ⟩ continuation f o (code c o continuation g) o code b o continuation h ≈⟨ assoc ⟩ (continuation f o code c o continuation g) o code b o continuation h ≈⟨⟩ continuation ((f ∙ g) ∙ h) ∎ identityL : (a : DataObj) (b : DataObj) (f : DataHom a b) → (DataId ∙ f) ≗ f identityL a b f = begin continuation (DataId ∙ f) ≈⟨⟩ rev-code b o code b o continuation f ≈⟨ assoc ⟩ (rev-code b o code b ) o continuation f ≈⟨ car ( id-right b) ⟩ id1 A (dom b) o continuation f ≈⟨ idL ⟩ continuation f ∎ identityR : (a : DataObj) (b : DataObj) (f : DataHom a b) → (f ∙ DataId ) ≗ f identityR a b f = begin continuation (f ∙ DataId) ≈⟨⟩ ( continuation f o ( code a o rev-code a ) ) ≈⟨ cdr (id-left a) ⟩ ( continuation f o id1 A (codom a) ) ≈⟨ idR ⟩ continuation f ∎ isEquivalence : {a : DataObj } {b : DataObj } → IsEquivalence {_} {_} {DataHom a b } _≗_ isEquivalence {C} {D} = -- this is the same function as A's equivalence but has different types record { refl = refl-hom ; sym = sym ; trans = trans-hom } DataCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ DataCategory = record { Obj = DataObj ; Hom = DataHom ; _o_ = _∙_ ; _≈_ = _≗_ ; Id = DataId ; isCategory = isDataCategory } open Functor open NTrans F : Obj A -> Obj DataCategory F d = record { dom = d ; codom = d ; code = id1 A d ; rev-code = id1 A d ; id-left = idL ; id-right = idR } where open ≈-Reasoning (A) U : Functor DataCategory A U = record { FObj = \d -> codom d ; FMap = \f -> A [ code ( data-codom f ) o continuation f ] ; isFunctor = record { ≈-cong = \{a} {b} {f} {g} -> ≈-cong-1 {a} {b} {f} {g} ; identity = \{a} -> identity-1 {a} ; distr = \{a b c f g} -> distr-1 {a} {b} {c} {f} {g} } } where open ≈-Reasoning (A) ≈-cong-1 : {a : Obj DataCategory} {b : Obj DataCategory} {f g : Hom DataCategory a b} → DataCategory [ f ≈ g ] → A [ A [ code (data-codom f) o continuation f ] ≈ A [ code (data-codom g) o continuation g ] ] ≈-cong-1 {a} {b} {f} {g} f≈g = begin code (data-codom f) o continuation f ≈⟨⟩ code b o continuation f ≈⟨ cdr f≈g ⟩ code b o continuation g ≈⟨⟩ code (data-codom g) o continuation g ∎ identity-1 : {a : Obj DataCategory} → A [ A [ code (data-codom (DataId {a})) o continuation (DataId {a}) ] ≈ id1 A (codom a) ] identity-1 {a} = begin code (data-codom (DataId {a} )) o continuation (DataId {a} ) ≈⟨⟩ code a o rev-code a ≈⟨ id-left a ⟩ id1 A (codom a) ∎ distr-1 : {a b c : Obj DataCategory} {f : Hom DataCategory a b} {g : Hom DataCategory b c} → A [ A [ code (data-codom ( g ∙ f )) o continuation ( g ∙ f ) ] ≈ A [ A [ code (data-codom g) o continuation g ] o A [ code (data-codom f) o continuation f ] ] ] distr-1 {a} {b} {c} {f} {g} = begin code (data-codom (g ∙ f )) o continuation ( g ∙ f ) ≈⟨⟩ code c o continuation g o code b o continuation f ≈⟨ assoc ⟩ (code c o continuation g ) o code b o continuation f ≈⟨⟩ ( code (data-codom g) o continuation g ) o ( code (data-codom f) o continuation f ) ∎ eta-map : (a : Obj A) → Hom A a ( FObj U (F a) ) eta-map a = id1 A a Lemma1 : UniversalMapping A DataCategory U F eta-map Lemma1 = record { _* = solution ; isUniversalMapping = record { universalMapping = \{a} {b} {f} -> universalMapping {a} {b} {f} ; uniquness = \{a} {b} {f} {g} -> uniqueness {a} {b} {f} {g} } } where open ≈-Reasoning (A) solution : {a : Obj A} {b : Obj DataCategory} → Hom A a (FObj U b) → Hom DataCategory (F a) b solution {a} {b} f = record { continuation = A [ rev-code b o f ] } universalMapping : {a : Obj A} {b : Obj DataCategory} {f : Hom A a (FObj U b)} → A [ A [ FMap U (solution {a} {b} f) o eta-map a ] ≈ f ] universalMapping {a} {b} {f} = begin FMap U (solution {a} {b} f) o eta-map a ≈⟨⟩ (code b o ( rev-code b o f)) o id1 A a ≈⟨ idR ⟩ code b o ( rev-code b o f) ≈⟨ assoc ⟩ (code b o rev-code b ) o f ≈⟨ car (id-left b) ⟩ id1 A (codom b) o f ≈⟨ idL ⟩ f ∎ uniqueness : {a : Obj A} {b : Obj DataCategory} {f : Hom A a (FObj U b)} {g : Hom DataCategory (F a) b} → A [ A [ FMap U g o eta-map a ] ≈ f ] → DataCategory [ solution f ≈ g ] uniqueness {a} {b} {f} {g} Uη≈f = begin continuation (solution {a} {b} f) ≈⟨⟩ rev-code b o f ≈⟨ sym ( cdr Uη≈f ) ⟩ rev-code b o ( code b o continuation g ) o id1 A (codom (F a)) ≈⟨ sym ( cdr assoc) ⟩ rev-code b o code b o continuation g o id1 A (codom (F a)) ≈⟨ assoc ⟩ (rev-code b o code b ) o continuation g o id1 A (codom (F a)) ≈⟨ car ( id-right b ) ⟩ id (dom b) o continuation g o id1 A (codom (F a)) ≈⟨ idL ⟩ ( continuation g ) o id1 A (codom (F a)) ≈⟨ idR ⟩ continuation g ∎