Mercurial > hg > Members > kono > Proof > category
view S.agda @ 639:4cf8f982dc5b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Jul 2017 02:18:57 +0900 |
parents | 7194ba55df56 |
children | 855e497a9c8f |
line wrap: on
line source
--I'd like to write the Limit in Sets Category using Agda. Assuming local smallness, a functor is a pair of map on Set OC and I, like this. -- -- sobj : OC → Set c₂ -- smap : { i j : OC } → (f : I ) → sobj i → sobj j -- --A cone for the functor is a record with two fields. Using the record, commutativity of the cone and the propertiesy of the Limit --are easity shown, except uniquness. The uniquness of the Limit turned out that congruence of the record with two fields. -- --In the following agda code, I'd like to prove snat-cong lemma. open import Level module S where open import Relation.Binary.Core open import Function import Relation.Binary.PropositionalEquality record snat { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I ) → sobj i → sobj j ) : Set c₂ where field snmap : ( i : OC ) → sobj i sncommute : ( i j : OC ) → ( f : I ) → smap f ( snmap i ) ≡ snmap j smap0 : { i j : OC } → (f : I ) → sobj i → sobj j smap0 {i} {j} f x = smap f x open snat snat-cong : { c : Level } { I OC : Set c } { SObj : OC → Set c } { SMap : { i j : OC } → (f : I )→ SObj i → SObj j } ( s t : snat SObj SMap ) → ( ( λ i → snmap s i ) ≡ ( λ i → snmap t i ) ) → ( ( λ i j f → smap0 s f ( snmap s i ) ≡ snmap s j ) ≡ ( ( λ i j f → smap0 t f ( snmap t i ) ≡ snmap t j ) ) ) → s ≡ t snat-cong s t refl refl = {!!} --This is quite simlar to the answer of -- -- Equality on dependent record types -- https://stackoverflow.com/questions/37488098/equality-on-dependent-record-types -- --So it should work something like -- -- snat-cong s t refl refl = refl -- --but it gives an error like this. -- -- .sncommute i j f != sncommute t i j f of type -- .SMap f (snmap t i) ≡ snmap t j -- --Is there any help?