Mercurial > hg > Members > kono > Proof > category
view list-monoid-cat.agda @ 444:59e47e75188f
complete connection for finite category
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 14 Oct 2016 19:12:01 +0900 |
parents | d6a6dd305da2 |
children |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level open import HomReasoning open import cat-utility module list-monoid-cat (c : Level ) where infixr 40 _::_ data List (A : Set ) : Set where [] : List A _::_ : A → List A → List A infixl 30 _++_ _++_ : {A : Set } → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) data ListObj : Set where * : ListObj open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality ≡-cong = Relation.Binary.PropositionalEquality.cong isListCategory : (A : Set) → IsCategory ListObj (λ a b → List A) _≡_ _++_ [] isListCategory A = record { isEquivalence = isEquivalence1 {A} ; identityL = list-id-l ; identityR = list-id-r ; o-resp-≈ = o-resp-≈ {A} ; associative = λ {a} {b} {c} {d} {x} {y} {z} → list-assoc {A} {x} {y} {z} } where list-id-l : { A : Set } → { x : List A } → [] ++ x ≡ x list-id-l {_} {_} = refl list-id-r : { A : Set } → { x : List A } → x ++ [] ≡ x list-id-r {_} {[]} = refl list-id-r {A} {x :: xs} = ≡-cong ( λ y → x :: y ) ( list-id-r {A} {xs} ) list-assoc : {A : Set} → { xs ys zs : List A } → ( xs ++ ( ys ++ zs ) ) ≡ ( ( xs ++ ys ) ++ zs ) list-assoc {_} {[]} {_} {_} = refl list-assoc {A} {x :: xs} {ys} {zs} = ≡-cong ( λ y → x :: y ) ( list-assoc {A} {xs} {ys} {zs} ) o-resp-≈ : {A : Set} → {f g : List A } → {h i : List A } → f ≡ g → h ≡ i → (h ++ f) ≡ (i ++ g) o-resp-≈ {A} refl refl = refl isEquivalence1 : {A : Set} → IsEquivalence {_} {_} {List A } _≡_ isEquivalence1 {A} = -- this is the same function as A's equivalence but has different types record { refl = refl ; sym = sym ; trans = trans } ListCategory : (A : Set) → Category _ _ _ ListCategory A = record { Obj = ListObj ; Hom = λ a b → List A ; _o_ = _++_ ; _≈_ = _≡_ ; Id = [] ; isCategory = ( isListCategory A ) } open import Algebra.Structures open import Algebra.FunctionProperties using (Op₁; Op₂) data MonoidObj : Set c where ! : MonoidObj record ≡-Monoid c : Set (suc c) where infixl 7 _∙_ field Carrier : Set c _∙_ : Op₂ Carrier ε : Carrier isMonoid : IsMonoid _≡_ _∙_ ε open ≡-Monoid open import Data.Product isMonoidCategory : (M : ≡-Monoid c) → IsCategory MonoidObj (λ a b → Carrier M ) _≡_ (_∙_ M) (ε M) isMonoidCategory M = record { isEquivalence = isEquivalence1 {M} ; identityL = λ {_} {_} {x} → (( proj₁ ( IsMonoid.identity ( isMonoid M )) ) x ) ; identityR = λ {_} {_} {x} → (( proj₂ ( IsMonoid.identity ( isMonoid M )) ) x ) ; associative = λ {a} {b} {c} {d} {x} {y} {z} → sym ( (IsMonoid.assoc ( isMonoid M )) x y z ) ; o-resp-≈ = o-resp-≈ {M} } where o-resp-≈ : {M : ≡-Monoid c} → {f g : Carrier M } → {h i : Carrier M } → f ≡ g → h ≡ i → (_∙_ M h f) ≡ (_∙_ M i g) o-resp-≈ {A} refl refl = refl isEquivalence1 : {M : ≡-Monoid c} → IsEquivalence {_} {_} {Carrier M } _≡_ isEquivalence1 {A} = -- this is the same function as A's equivalence but has different types record { refl = refl ; sym = sym ; trans = trans } MonoidCategory : (M : ≡-Monoid c) → Category _ _ _ MonoidCategory M = record { Obj = MonoidObj ; Hom = λ a b → Carrier M ; _o_ = _∙_ M ; _≈_ = _≡_ ; Id = ε M ; isCategory = ( isMonoidCategory M ) }