Mercurial > hg > Members > kono > Proof > category
view epi.agda @ 792:5bee48f7c126
deduction theorem using category
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Apr 2019 18:11:14 +0900 |
parents | db59b8f954aa |
children |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level module epi where open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym ) open import Relation.Binary.Core data FourObject : Set where ta : FourObject tb : FourObject tc : FourObject td : FourObject data FourHom : FourObject → FourObject → Set where id-ta : FourHom ta ta id-tb : FourHom tb tb id-tc : FourHom tc tc id-td : FourHom td td arrow-ca : FourHom tc ta arrow-ab : FourHom ta tb arrow-bd : FourHom tb td arrow-cb : FourHom tc tb arrow-ad : FourHom ta td arrow-cd : FourHom tc td -- -- epi and monic but does not have inverted arrow -- -- +--------------------------+ -- | | -- c-----------------+ | -- | ↓ ↓ -- + ----→ a ----→ b ----→ d -- | ↑ -- +-----------------+ -- _・_ : {a b c : FourObject } → FourHom b c → FourHom a b → FourHom a c _・_ {x} {ta} {ta} id-ta y = y _・_ {x} {tb} {tb} id-tb y = y _・_ {x} {tc} {tc} id-tc y = y _・_ {x} {td} {td} id-td y = y _・_ {ta} {ta} {x} y id-ta = y _・_ {tb} {tb} {x} y id-tb = y _・_ {tc} {tc} {x} y id-tc = y _・_ {td} {td} {x} y id-td = y _・_ {tc} {ta} {tb} arrow-ab arrow-ca = arrow-cb _・_ {ta} {tb} {td} arrow-bd arrow-ab = arrow-ad _・_ {tc} {tb} {td} arrow-bd arrow-cb = arrow-cd _・_ {tc} {ta} {td} arrow-ad arrow-ca = arrow-cd _・_ {tc} {ta} {tc} () arrow-ca _・_ {ta} {tb} {ta} () arrow-ab _・_ {tc} {tb} {ta} () arrow-cb _・_ {ta} {tb} {tc} () arrow-ab _・_ {tc} {tb} {tc} () arrow-cb _・_ {tb} {td} {ta} () arrow-bd _・_ {ta} {td} {ta} () arrow-ad _・_ {tc} {td} {ta} () arrow-cd _・_ {tb} {td} {tb} () arrow-bd _・_ {ta} {td} {tb} () arrow-ad _・_ {tc} {td} {tb} () arrow-cd _・_ {tb} {td} {tc} () arrow-bd _・_ {ta} {td} {tc} () arrow-ad _・_ {tc} {td} {tc} () arrow-cd open FourHom assoc-・ : {a b c d : FourObject } (f : FourHom c d ) → (g : FourHom b c ) → (h : FourHom a b ) → ( f ・ (g ・ h)) ≡ ((f ・ g) ・ h ) assoc-・ id-ta y z = refl assoc-・ id-tb y z = refl assoc-・ id-tc y z = refl assoc-・ id-td y z = refl assoc-・ arrow-ca id-tc z = refl assoc-・ arrow-ab id-ta z = refl assoc-・ arrow-ab arrow-ca id-tc = refl assoc-・ arrow-bd id-tb z = refl assoc-・ arrow-bd arrow-ab id-ta = refl assoc-・ arrow-bd arrow-ab arrow-ca = refl assoc-・ arrow-bd arrow-cb id-tc = refl assoc-・ arrow-cb id-tc z = refl assoc-・ arrow-ad id-ta z = refl assoc-・ arrow-ad arrow-ca id-tc = refl assoc-・ arrow-cd id-tc id-tc = refl FourId : (a : FourObject ) → (FourHom a a ) FourId ta = id-ta FourId tb = id-tb FourId tc = id-tc FourId td = id-td open import Relation.Binary.PropositionalEquality FourCat : Category zero zero zero FourCat = record { Obj = FourObject ; Hom = λ a b → FourHom a b ; _o_ = λ{a} {b} {c} x y → _・_ x y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → FourId a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → identityL {a} {b} {f} ; identityR = λ{a b f} → identityR {a} {b} {f} ; o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → assoc-・ f g h } } where identityL : {A B : FourObject } {f : ( FourHom A B) } → ((FourId B) ・ f) ≡ f identityL {ta} {ta} {id-ta} = refl identityL {tb} {tb} {id-tb} = refl identityL {tc} {tc} {id-tc} = refl identityL {td} {td} {id-td} = refl identityL {tc} {ta} {arrow-ca} = refl identityL {ta} {tb} {arrow-ab} = refl identityL {tb} {td} {arrow-bd} = refl identityL {tc} {tb} {arrow-cb} = refl identityL {ta} {td} {arrow-ad} = refl identityL {tc} {td} {arrow-cd} = refl identityR : {A B : FourObject } {f : ( FourHom A B) } → ( f ・ FourId A ) ≡ f identityR {ta} {ta} {id-ta} = refl identityR {tb} {tb} {id-tb} = refl identityR {tc} {tc} {id-tc} = refl identityR {td} {td} {id-td} = refl identityR {tc} {ta} {arrow-ca} = refl identityR {ta} {tb} {arrow-ab} = refl identityR {tb} {td} {arrow-bd} = refl identityR {tc} {tb} {arrow-cb} = refl identityR {ta} {td} {arrow-ad} = refl identityR {tc} {td} {arrow-cd} = refl o-resp-≈ : {A B C : FourObject } {f g : ( FourHom A B)} {h i : ( FourHom B C)} → f ≡ g → h ≡ i → ( h ・ f ) ≡ ( i ・ g ) o-resp-≈ {a} {b} {c} {f} {x} {h} {y} refl refl = refl epi : {a b c : FourObject } (f₁ f₂ : Hom FourCat a b ) ( h : Hom FourCat b c ) → h ・ f₁ ≡ h ・ f₂ → f₁ ≡ f₂ epi id-ta id-ta _ refl = refl epi id-tb id-tb _ refl = refl epi id-tc id-tc _ refl = refl epi id-td id-td _ refl = refl epi arrow-ca arrow-ca _ refl = refl epi arrow-ab arrow-ab _ refl = refl epi arrow-bd arrow-bd _ refl = refl epi arrow-cb arrow-cb _ refl = refl epi arrow-ad arrow-ad _ refl = refl epi arrow-cd arrow-cd _ refl = refl monic : {a b c : FourObject } (g₁ g₂ : Hom FourCat b c ) ( h : Hom FourCat a b ) → g₁ ・ h ≡ g₂ ・ h → g₁ ≡ g₂ monic id-ta id-ta _ refl = refl monic id-tb id-tb _ refl = refl monic id-tc id-tc _ refl = refl monic id-td id-td _ refl = refl monic arrow-ca arrow-ca _ refl = refl monic arrow-ab arrow-ab _ refl = refl monic arrow-bd arrow-bd _ refl = refl monic arrow-cb arrow-cb _ refl = refl monic arrow-ad arrow-ad _ refl = refl monic arrow-cd arrow-cd _ refl = refl open import cat-utility open import Relation.Nullary open import Data.Empty record Rev {a b : FourObject } (f : Hom FourCat a b ) : Set where field rev : Hom FourCat b a eq : f ・ rev ≡ id1 FourCat b not-rev : ¬ ( {a b : FourObject } → (f : Hom FourCat a b ) → Rev f ) not-rev r = lemma1 arrow-ab (Rev.rev (r arrow-ab)) (Rev.eq (r arrow-ab)) where lemma1 : (f : Hom FourCat ta tb ) → (e₁ : Hom FourCat tb ta ) → ( f ・ e₁ ≡ id1 FourCat tb ) → ⊥ lemma1 _ () eq