Mercurial > hg > Members > kono > Proof > category
view record-ex.agda @ 792:5bee48f7c126
deduction theorem using category
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Apr 2019 18:11:14 +0900 |
parents | 0d7fa6fc5979 |
children |
line wrap: on
line source
module record-ex where data _∨_ (A B : Set) : Set where or1 : A → A ∨ B or2 : B → A ∨ B postulate A B C : Set postulate a1 a2 a3 : A postulate b1 b2 b3 : B x : ( A ∨ B ) x = or1 a1 y : ( A ∨ B ) y = or2 b1 f : ( A ∨ B ) → A f (or1 a) = a f (or2 b) = a1 record _∧_ (A B : Set) : Set where field and1 : A and2 : B z : A ∧ B z = record { and1 = a1 ; and2 = b2 } xa : A xa = _∧_.and1 z xb : B xb = _∧_.and2 z open _∧_ ya : A ya = and1 z lemma1 : A ∧ B → A lemma1 a = and1 a lemma2 : A → B → A ∧ B lemma2 a b = record { and1 = a ; and2 = b } open import Relation.Binary.PropositionalEquality data Nat : Set where zero : Nat suc : Nat → Nat record Mod3 (m : Nat) : Set where field mod3 : (suc (suc (suc m ))) ≡ m n : Nat n = m open Mod3 Lemma1 : ( x : Mod3 ( suc (suc (suc (suc zero))))) ( y : Mod3 ( suc zero ) ) → n x ≡ n y Lemma1 x y = mod3 y