view src/deductive.agda @ 1012:5dcbf2b9194e

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 20 Mar 2021 20:33:28 +0900
parents a104c3baefe4
children
line wrap: on
line source

open import Level
open import Category
open import CCC

module deductive {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (  L :  CCC A ) where

open CCC.CCC L
_・_ = _[_o_] A
  
  -- every proof b →  c with assumption a has following forms
data  φ  {a ⊤ : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁  ⊔  c₂ ⊔ ℓ) where
     i   : {b c : Obj A} {k : Hom A b c } → φ x k
     ii  : φ x {⊤} {a} x
     iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c'  ∧ c''} < f , g > 
     iv  : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g )
     v   : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' }  (ψ : φ x f )  → φ x {b} {c'' <= c'} ( f * )
     φ-cong   : {b c : Obj A} {k k' : Hom A b c } → A [ k ≈ k' ] → φ x k  → φ x k'
  
α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) )
α = < π  ・ π   , < π'  ・ π  , π'  > >
  
  -- genetate (a ∧ b) → c proof from  proof b →  c with assumption a
  
k : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → {z : Hom A b c } → ( y  : φ {a} x∈a z ) → Hom A (a ∧ b) c
k x∈a {k} i = k ・ π'
k x∈a ii = π
k x∈a (iii ψ χ ) = < k x∈a ψ  , k x∈a χ  >
k x∈a (iv ψ χ ) = k x∈a ψ  ・ < π , k x∈a χ  >
k x∈a (v ψ ) = ( k x∈a ψ  ・ α ) *
k x∈a (φ-cong  eq ψ) = k x∈a  ψ

toφ : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → (z : Hom A b c ) → φ {a} x∈a z  
toφ {a} {⊤} {b} {c} x∈a z = i