Mercurial > hg > Members > kono > Proof > category
view src/CCCSets.agda @ 1076:5e89bbb4cf53
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 09 May 2021 17:09:21 +0900 |
parents | 10b4d04b734f |
children | bcaa8f66ec09 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module CCCSets where open import Level open import Category open import HomReasoning open import cat-utility open import Data.Product renaming (_×_ to _/\_ ) hiding ( <_,_> ) open import Category.Constructions.Product open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import CCC open Functor -- ccc-1 : Hom A a 1 ≅ {*} -- ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b ) -- ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c open import Category.Sets -- Sets is a CCC open import SetsCompleteness hiding (ki1) -- import Axiom.Extensionality.Propositional -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ data One {c : Level } : Set c where ! : One -- () in Haskell ( or any one object set ) sets : {c : Level } → CCC (Sets {c}) sets = record { 1 = One ; ○ = λ _ → λ _ → ! ; _∧_ = _∧_ ; <_,_> = <,> ; π = π ; π' = π' ; _<=_ = _<=_ ; _* = _* ; ε = ε ; isCCC = isCCC } where 1 : Obj Sets 1 = One ○ : (a : Obj Sets ) → Hom Sets a 1 ○ a = λ _ → ! _∧_ : Obj Sets → Obj Sets → Obj Sets _∧_ a b = a /\ b <,> : {a b c : Obj Sets } → Hom Sets c a → Hom Sets c b → Hom Sets c ( a ∧ b) <,> f g = λ x → ( f x , g x ) π : {a b : Obj Sets } → Hom Sets (a ∧ b) a π {a} {b} = proj₁ π' : {a b : Obj Sets } → Hom Sets (a ∧ b) b π' {a} {b} = proj₂ _<=_ : (a b : Obj Sets ) → Obj Sets a <= b = b → a _* : {a b c : Obj Sets } → Hom Sets (a ∧ b) c → Hom Sets a (c <= b) f * = λ x → λ y → f ( x , y ) ε : {a b : Obj Sets } → Hom Sets ((a <= b ) ∧ b) a ε {a} {b} = λ x → ( proj₁ x ) ( proj₂ x ) isCCC : CCC.IsCCC Sets 1 ○ _∧_ <,> π π' _<=_ _* ε isCCC = record { e2 = e2 ; e3a = λ {a} {b} {c} {f} {g} → e3a {a} {b} {c} {f} {g} ; e3b = λ {a} {b} {c} {f} {g} → e3b {a} {b} {c} {f} {g} ; e3c = e3c ; π-cong = π-cong ; e4a = e4a ; e4b = e4b ; *-cong = *-cong } where e2 : {a : Obj Sets} {f : Hom Sets a 1} → Sets [ f ≈ ○ a ] e2 {a} {f} = extensionality Sets ( λ x → e20 x ) where e20 : (x : a ) → f x ≡ ○ a x e20 x with f x e20 x | ! = refl e3a : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → Sets [ ( Sets [ π o ( <,> f g) ] ) ≈ f ] e3a = refl e3b : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → Sets [ Sets [ π' o ( <,> f g ) ] ≈ g ] e3b = refl e3c : {a b c : Obj Sets} {h : Hom Sets c (a ∧ b)} → Sets [ <,> (Sets [ π o h ]) (Sets [ π' o h ]) ≈ h ] e3c = refl π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ <,> f g ≈ <,> f' g' ] π-cong refl refl = refl e4a : {a b c : Obj Sets} {h : Hom Sets (c ∧ b) a} → Sets [ Sets [ ε o <,> (Sets [ h * o π ]) π' ] ≈ h ] e4a = refl e4b : {a b c : Obj Sets} {k : Hom Sets c (a <= b)} → Sets [ (Sets [ ε o <,> (Sets [ k o π ]) π' ]) * ≈ k ] e4b = refl *-cong : {a b c : Obj Sets} {f f' : Hom Sets (a ∧ b) c} → Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ] *-cong refl = refl open import Relation.Nullary open import Data.Empty open import equalizer data Bool { c : Level } : Set c where true : Bool false : Bool ¬f≡t : { c : Level } → ¬ (false {c} ≡ true ) ¬f≡t () ¬x≡t∧x≡f : { c : Level } → {x : Bool {c}} → ¬ ((x ≡ false) /\ (x ≡ true) ) ¬x≡t∧x≡f {_} {true} p = ⊥-elim (¬f≡t (sym (proj₁ p))) ¬x≡t∧x≡f {_} {false} p = ⊥-elim (¬f≡t (proj₂ p)) data _∨_ {c c' : Level } (a : Set c) (b : Set c') : Set (c ⊔ c') where case1 : a → a ∨ b case2 : b → a ∨ b --------------------------------------------- -- -- a binary Topos of Sets -- -- m : b → a determins a subset of a as an image -- b and m-image in a has one to one correspondence with an equalizer (x : b) → (y : a) ≡ m x. -- so tchar m mono and ker (tchar m mono) is Iso. -- Finding (x : b) from (y : a) is non constructive. Assuming LEM of image. -- data image {c : Level} {a b : Set c} (m : Hom Sets b a) : a → Set c where isImage : (x : b ) → image m (m x) topos : {c : Level } → ({ c : Level} → (b : Set c) → b ∨ (¬ b)) → Topos (Sets {c}) sets topos {c} lem = record { Ω = Bool ; ⊤ = λ _ → true ; Ker = tker ; char = λ m mono → tchar m mono ; isTopos = record { char-uniqueness = λ {a} {b} {h} → extensionality Sets ( λ x → uniq h x ) ; char-iso = iso-m ; ker-m = ker-iso } } where -- -- In Sets, equalizers exist as -- data sequ {c : Level} (A B : Set c) ( f g : A → B ) : Set c where -- elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g -- m have to be isomorphic to ker (char m). -- -- b→s ○ b -- ker (char m) ----→ b -----------→ 1 -- | ←---- | | -- | b←s |m | ⊤ char m : a → Ω = {true,false} -- | e ↓ char m ↓ if y : a ≡ m (∃ x : b) → true ( data char ) -- +-------------→ a -----------→ Ω else false -- h -- tker : {a : Obj Sets} (h : Hom Sets a Bool) → Equalizer Sets h (Sets [ (λ _ → true ) o CCC.○ sets a ]) tker {a} h = record { equalizer-c = sequ a Bool h (λ _ → true ) ; equalizer = λ e → equ e ; isEqualizer = SetsIsEqualizer _ _ _ _ } tchar : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) → a → Bool {c} tchar {a} {b} m mono y with lem (image m y ) ... | case1 t = true ... | case2 f = false -- imequ : {a b : Obj Sets} (m : Hom Sets b a) (mono : Mono Sets m) → IsEqualizer Sets m (tchar m mono) (Sets [ (λ _ → true ) o CCC.○ sets a ]) -- imequ {a} {b} m mono = equalizerIso _ _ (tker (tchar m mono)) m (isol m mono) uniq : {a : Obj (Sets {c})} (h : Hom Sets a Bool) (y : a) → tchar (Equalizer.equalizer (tker h)) (record { isMono = λ f g → monic (tker h) }) y ≡ h y uniq {a} h y with h y | inspect h y | lem (image (Equalizer.equalizer (tker h)) y ) | inspect (tchar (Equalizer.equalizer (tker h)) (record { isMono = λ f g → monic (tker h) })) y ... | true | record { eq = eqhy } | case1 x | record { eq = eq1 } = eq1 ... | true | record { eq = eqhy } | case2 x | record { eq = eq1 } = ⊥-elim (x (isImage (elem y eqhy))) ... | false | record { eq = eqhy } | case1 (isImage (elem x eq)) | record { eq = eq1 } = ⊥-elim ( ¬x≡t∧x≡f record {fst = eqhy ; snd = eq }) ... | false | record { eq = eqhy } | case2 x | record { eq = eq1 } = eq1 -- technical detail of equalizer-image isomorphism (isol) below open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) img-cong : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → (y y' : a) → y ≡ y' → (s : image m y ) (t : image m y') → s ≅ t img-cong {a} {b} m mono .(m x) .(m x₁) eq (isImage x) (isImage x₁) with cong (λ k → k ! ) ( Mono.isMono mono {One} (λ _ → x) (λ _ → x₁ ) ( extensionality Sets ( λ _ → eq )) ) ... | refl = HE.refl image-uniq : {a b : Obj (Sets {c})} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → (i0 i1 : image m y ) → i0 ≡ i1 image-uniq {a} {b} m mono y i0 i1 = HE.≅-to-≡ (img-cong m mono y y refl i0 i1) tchar¬Img : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → tchar m mono y ≡ false → ¬ image m y tchar¬Img m mono y eq im with lem (image m y) ... | case2 n = n im b2i : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (x : b) → image m (m x) b2i m x = isImage x i2b : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → {y : a} → image m y → b i2b m (isImage x) = x img-mx=y : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → {y : a} → (im : image m y ) → m (i2b m im) ≡ y img-mx=y m (isImage x) = refl b2i-iso : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (x : b) → i2b m (b2i m x) ≡ x b2i-iso m x = refl b2s : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → (x : b) → sequ a Bool (tchar m mono) (λ _ → true ) b2s m mono x with tchar m mono (m x) | inspect (tchar m mono) (m x) ... | true | record {eq = eq1} = elem (m x) eq1 ... | false | record { eq = eq1 } with tchar¬Img m mono (m x) eq1 ... | t = ⊥-elim (t (isImage x)) s2i : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → (e : sequ a Bool (tchar m mono) (λ _ → true )) → image m (equ e) s2i {a} {b} m mono (elem y eq) with lem (image m y) ... | case1 im = im iso-m : {a a' b : Obj Sets} (p : Hom Sets a b) (q : Hom Sets a' b) (mp : Mono Sets p) (mq : Mono Sets q) → Iso Sets a a' → Sets [ tchar p mp ≈ tchar q mq ] iso-m {a} {a'} {b} p q mp mq i = extensionality Sets (λ y → iso-m1 y ) where iso-m1 : (y : b) → tchar p mp y ≡ tchar q mq y iso-m1 y with lem (image p y) | inspect (tchar p mp) y | lem (image q y) | inspect (tchar q mq) y ... | case1 (isImage x) | t | case1 x₁ | v = {!!} ... | case1 (isImage x) | t | case2 x₁ | v = {!!} ... | case2 x | t | case1 (isImage x₁) | v = {!!} ... | case2 x | t | case2 x₁ | v = {!!} ker-iso : {a b : Obj Sets} (m : Hom Sets b a) (mono : Mono Sets m) → IsEqualizer Sets m (tchar m mono) (Sets [ (λ _ → true) o CCC.○ sets a ]) ker-iso {a} {b} m mono = equalizerIso _ _ (tker (tchar m mono)) m isol (extensionality Sets ( λ x → iso4 x)) where b→s : Hom Sets b (sequ a Bool (tchar m mono) (λ _ → true)) b→s x = b2s m mono x b←s : Hom Sets (sequ a Bool (tchar m mono) (λ _ → true)) b b←s (elem y eq) = i2b m (s2i m mono (elem y eq)) iso3 : (s : sequ a Bool (tchar m mono) (λ _ → true)) → m (b←s s) ≡ equ s iso3 (elem y eq) with lem (image m y) ... | case1 (isImage x) = refl iso1 : (x : b) → b←s ( b→s x ) ≡ x iso1 x with tchar m mono (m x) | inspect (tchar m mono ) (m x) ... | true | record { eq = eq1 } = begin b←s ( elem (m x) eq1 ) ≡⟨⟩ i2b m (s2i m mono (elem (m x ) eq1 )) ≡⟨ cong (λ k → i2b m k) (image-uniq m mono (m x) (s2i m mono (elem (m x ) eq1 )) (isImage x) ) ⟩ i2b m (isImage x) ≡⟨⟩ x ∎ where open ≡-Reasoning iso1 x | false | record { eq = eq1 } = ⊥-elim ( tchar¬Img m mono (m x) eq1 (isImage x)) iso4 : (x : b ) → (Sets [ Equalizer.equalizer (tker (tchar m mono)) o b→s ]) x ≡ m x iso4 x = begin equ (b2s m mono x) ≡⟨ sym (iso3 (b2s m mono x)) ⟩ m (b←s (b2s m mono x)) ≡⟨ cong (λ k → m k ) (iso1 x) ⟩ m x ∎ where open ≡-Reasoning iso2 : (x : sequ a Bool (tchar m mono) (λ _ → true) ) → (Sets [ b→s o b←s ]) x ≡ id1 Sets (sequ a Bool (tchar m mono) (λ _ → true)) x iso2 (elem y eq) = begin b→s ( b←s (elem y eq)) ≡⟨⟩ b2s m mono ( i2b m (s2i m mono (elem y eq))) ≡⟨⟩ b2s m mono x ≡⟨ elm-cong _ _ (iso21 x ) ⟩ elem (m x) eq1 ≡⟨ elm-cong _ _ mx=y ⟩ elem y eq ∎ where open ≡-Reasoning x : b x = i2b m (s2i m mono (elem y eq)) eq1 : tchar m mono (m x) ≡ true eq1 with lem (image m (m x)) ... | case1 t = refl ... | case2 n = ⊥-elim (n (isImage x)) mx=y : m x ≡ y mx=y = img-mx=y m (s2i m mono (elem y eq)) iso21 : (x : b) → equ (b2s m mono x ) ≡ m x iso21 x with tchar m mono (m x) | inspect (tchar m mono) (m x) ... | true | record {eq = eq1} = refl ... | false | record { eq = eq1 } with tchar¬Img m mono (m x) eq1 ... | t = ⊥-elim (t (isImage x)) isol : Iso Sets b (Equalizer.equalizer-c (tker (tchar m mono))) isol = record { ≅→ = b→s ; ≅← = b←s ; iso→ = extensionality Sets ( λ x → iso1 x ) ; iso← = extensionality Sets ( λ x → iso2 x) } -- ; iso≈L = extensionality Sets ( λ s → iso3 s ) } where open import Polynominal (Sets {c} ) (sets {c}) A = Sets {c} Ω = Bool 1 = One ⊤ = λ _ → true ○ = λ _ → λ _ → ! _⊢_ : {a b : Obj A} (p : Poly a Ω b ) (q : Poly a Ω b ) → Set (suc c ) _⊢_ {a} {b} p q = {c : Obj A} (h : Hom A c b ) → A [ Poly.f p o h ≈ ⊤ o ○ c ] → A [ Poly.f q ∙ h ≈ ⊤ o ○ c ] tl01 : {a b : Obj A} (p : Poly a Ω b ) (q : Poly a Ω b ) → p ⊢ q → q ⊢ p → A [ Poly.f p ≈ Poly.f q ] tl01 {a} {b} p q p<q q<p = extensionality Sets t1011 where open ≡-Reasoning t1011 : (s : b ) → Poly.f p s ≡ Poly.f q s t1011 x with Poly.f p x | inspect ( Poly.f p) x ... | true | record { eq = eq1 } = sym tt1 where tt1 : Poly.f q _ ≡ true tt1 = cong (λ k → k !) (p<q _ ( extensionality Sets (λ x → eq1) )) ... | false | record { eq = eq1 } with Poly.f q x | inspect (Poly.f q) x ... | true | record { eq = eq2 } = ⊥-elim ( ¬x≡t∧x≡f record { fst = eq1 ; snd = tt1 } ) where tt1 : Poly.f p _ ≡ true tt1 = cong (λ k → k !) (q<p _ ( extensionality Sets (λ x → eq2) )) ... | false | eq2 = refl open import graph module ccc-from-graph {c₁ c₂ : Level } (G : Graph {c₁} {c₂}) where open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) hiding ( [_] ) open Graph V = vertex G E : V → V → Set c₂ E = edge G data Objs : Set c₁ where atom : V → Objs ⊤ : Objs _∧_ : Objs → Objs → Objs _<=_ : Objs → Objs → Objs data Arrows : (b c : Objs ) → Set (c₁ ⊔ c₂) data Arrow : Objs → Objs → Set (c₁ ⊔ c₂) where --- case i arrow : {a b : V} → E a b → Arrow (atom a) (atom b) π : {a b : Objs } → Arrow ( a ∧ b ) a π' : {a b : Objs } → Arrow ( a ∧ b ) b ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a _* : {a b c : Objs } → Arrows (c ∧ b ) a → Arrow c ( a <= b ) --- case v data Arrows where id : ( a : Objs ) → Arrows a a --- case i ○ : ( a : Objs ) → Arrows a ⊤ --- case i <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b) -- case iii iv : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c -- cas iv _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c id a ・ g = g ○ a ・ g = ○ _ < f , g > ・ h = < f ・ h , g ・ h > iv f g ・ h = iv f ( g ・ h ) identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f identityL = refl identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f identityR {a} {a} {id a} = refl identityR {a} {⊤} {○ a} = refl identityR {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR identityR identityR {a} {b} {iv f g} = cong (λ k → iv f k ) identityR assoc≡ : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) ≡ ((f ・ g) ・ h) assoc≡ (id a) g h = refl assoc≡ (○ a) g h = refl assoc≡ < f , f₁ > g h = cong₂ (λ j k → < j , k > ) (assoc≡ f g h) (assoc≡ f₁ g h) assoc≡ (iv f f1) g h = cong (λ k → iv f k ) ( assoc≡ f1 g h ) -- positive intutionistic calculus PL : Category c₁ (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL = record { Obj = Objs; Hom = λ a b → Arrows a b ; _o_ = λ{a} {b} {c} x y → x ・ y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → id a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym} ; identityL = λ {a b f} → identityL {a} {b} {f} ; identityR = λ {a b f} → identityR {a} {b} {f} ; o-resp-≈ = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → assoc≡ f g h } } where o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) o-resp-≈ refl refl = refl -------- -- -- Functor from Positive Logic to Sets -- -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionalit y c₂ c₂ open import Data.List C = graphtocat.Chain G tr : {a b : vertex G} → edge G a b → ((y : vertex G) → C y a) → (y : vertex G) → C y b tr f x y = graphtocat.next f (x y) fobj : ( a : Objs ) → Set (c₁ ⊔ c₂) fobj (atom x) = ( y : vertex G ) → C y x fobj ⊤ = One fobj (a ∧ b) = ( fobj a /\ fobj b) fobj (a <= b) = fobj b → fobj a fmap : { a b : Objs } → Hom PL a b → fobj a → fobj b amap : { a b : Objs } → Arrow a b → fobj a → fobj b amap (arrow x) y = tr x y -- tr x amap π ( x , y ) = x amap π' ( x , y ) = y amap ε (f , x ) = f x amap (f *) x = λ y → fmap f ( x , y ) fmap (id a) x = x fmap (○ a) x = ! fmap < f , g > x = ( fmap f x , fmap g x ) fmap (iv x f) a = amap x ( fmap f a ) -- CS is a map from Positive logic to Sets -- Sets is CCC, so we have a cartesian closed category generated by a graph -- as a sub category of Sets CS : Functor PL (Sets {c₁ ⊔ c₂}) FObj CS a = fobj a FMap CS {a} {b} f = fmap {a} {b} f isFunctor CS = isf where _+_ = Category._o_ PL ++idR = IsCategory.identityR ( Category.isCategory PL ) distr : {a b c : Obj PL} { f : Hom PL a b } { g : Hom PL b c } → (z : fobj a ) → fmap (g + f) z ≡ fmap g (fmap f z) distr {a} {a₁} {a₁} {f} {id a₁} z = refl distr {a} {a₁} {⊤} {f} {○ a₁} z = refl distr {a} {b} {c ∧ d} {f} {< g , g₁ >} z = cong₂ (λ j k → j , k ) (distr {a} {b} {c} {f} {g} z) (distr {a} {b} {d} {f} {g₁} z) distr {a} {b} {c} {f} {iv {_} {_} {d} x g} z = adistr (distr {a} {b} {d} {f} {g} z) x where adistr : fmap (g + f) z ≡ fmap g (fmap f z) → ( x : Arrow d c ) → fmap ( iv x (g + f) ) z ≡ fmap ( iv x g ) (fmap f z ) adistr eq x = cong ( λ k → amap x k ) eq isf : IsFunctor PL Sets fobj fmap IsFunctor.identity isf = extensionality Sets ( λ x → refl ) IsFunctor.≈-cong isf refl = refl IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z )