Mercurial > hg > Members > kono > Proof > category
view CCCGraph.agda @ 882:6c69d48e6015
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 Apr 2020 18:47:14 +0900 |
parents | a115daa7d30e |
children | 484f19f16712 32c11e2fdf82 |
line wrap: on
line source
open import Level open import Category module CCCgraph where open import HomReasoning open import cat-utility open import Data.Product renaming (_×_ to _/\_ ) hiding ( <_,_> ) open import Category.Constructions.Product open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import CCC open Functor -- ccc-1 : Hom A a 1 ≅ {*} -- ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b ) -- ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c open import Category.Sets ------------------------------------------------------ -- Sets is a CCC ------------------------------------------------------ postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ data One {l : Level} : Set l where OneObj : One -- () in Haskell ( or any one object set ) sets : {l : Level } → CCC (Sets {l}) sets {l} = record { 1 = One ; ○ = λ _ → λ _ → OneObj ; _∧_ = _∧_ ; <_,_> = <,> ; π = π ; π' = π' ; _<=_ = _<=_ ; _* = _* ; ε = ε ; isCCC = isCCC } where 1 : Obj Sets 1 = One ○ : (a : Obj Sets ) → Hom Sets a 1 ○ a = λ _ → OneObj _∧_ : Obj Sets → Obj Sets → Obj Sets _∧_ a b = a /\ b <,> : {a b c : Obj Sets } → Hom Sets c a → Hom Sets c b → Hom Sets c ( a ∧ b) <,> f g = λ x → ( f x , g x ) π : {a b : Obj Sets } → Hom Sets (a ∧ b) a π {a} {b} = proj₁ π' : {a b : Obj Sets } → Hom Sets (a ∧ b) b π' {a} {b} = proj₂ _<=_ : (a b : Obj Sets ) → Obj Sets a <= b = b → a _* : {a b c : Obj Sets } → Hom Sets (a ∧ b) c → Hom Sets a (c <= b) f * = λ x → λ y → f ( x , y ) ε : {a b : Obj Sets } → Hom Sets ((a <= b ) ∧ b) a ε {a} {b} = λ x → ( proj₁ x ) ( proj₂ x ) isCCC : CCC.IsCCC Sets 1 ○ _∧_ <,> π π' _<=_ _* ε isCCC = record { e2 = e2 ; e3a = λ {a} {b} {c} {f} {g} → e3a {a} {b} {c} {f} {g} ; e3b = λ {a} {b} {c} {f} {g} → e3b {a} {b} {c} {f} {g} ; e3c = e3c ; π-cong = π-cong ; e4a = e4a ; e4b = e4b ; *-cong = *-cong } where e2 : {a : Obj Sets} {f : Hom Sets a 1} → Sets [ f ≈ ○ a ] e2 {a} {f} = extensionality Sets ( λ x → e20 x ) where e20 : (x : a ) → f x ≡ ○ a x e20 x with f x e20 x | OneObj = refl e3a : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → Sets [ ( Sets [ π o ( <,> f g) ] ) ≈ f ] e3a = refl e3b : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → Sets [ Sets [ π' o ( <,> f g ) ] ≈ g ] e3b = refl e3c : {a b c : Obj Sets} {h : Hom Sets c (a ∧ b)} → Sets [ <,> (Sets [ π o h ]) (Sets [ π' o h ]) ≈ h ] e3c = refl π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ <,> f g ≈ <,> f' g' ] π-cong refl refl = refl e4a : {a b c : Obj Sets} {h : Hom Sets (c ∧ b) a} → Sets [ Sets [ ε o <,> (Sets [ h * o π ]) π' ] ≈ h ] e4a = refl e4b : {a b c : Obj Sets} {k : Hom Sets c (a <= b)} → Sets [ (Sets [ ε o <,> (Sets [ k o π ]) π' ]) * ≈ k ] e4b = refl *-cong : {a b c : Obj Sets} {f f' : Hom Sets (a ∧ b) c} → Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ] *-cong refl = refl module sets-from-graph where ------------------------------------------------------ -- CCC generated from a graph ------------------------------------------------------ open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) hiding ( [_] ) open import graph open graphtocat open Graph data Objs (G : Graph {Level.zero} {Level.zero} ) : Set where -- formula atom : (vertex G) → Objs G ⊤ : Objs G _∧_ : Objs G → Objs G → Objs G _<=_ : Objs G → Objs G → Objs G data Arrow (G : Graph ) : Objs G → Objs G → Set where --- proof arrow : {a b : vertex G} → (edge G) a b → Arrow G (atom a) (atom b) ○ : (a : Objs G ) → Arrow G a ⊤ π : {a b : Objs G } → Arrow G ( a ∧ b ) a π' : {a b : Objs G } → Arrow G ( a ∧ b ) b ε : {a b : Objs G } → Arrow G ((a <= b) ∧ b ) a <_,_> : {a b c : Objs G } → Arrow G c a → Arrow G c b → Arrow G c (a ∧ b) _* : {a b c : Objs G } → Arrow G (c ∧ b ) a → Arrow G c ( a <= b ) record SM {v : Level} : Set (suc v) where field graph : Graph {v} {v} sobj : vertex graph → Set smap : { a b : vertex graph } → edge graph a b → sobj a → sobj b open SM -- positive intutionistic calculus PL : (G : SM) → Graph PL G = record { vertex = Objs (graph G) ; edge = Arrow (graph G) } DX : (G : SM) → Category Level.zero Level.zero Level.zero DX G = GraphtoCat (PL G) -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ fobj : {G : SM} ( a : Objs (graph G) ) → Set fobj {G} (atom x) = sobj G x fobj {G} (a ∧ b) = (fobj {G} a ) /\ (fobj {G} b ) fobj {G} (a <= b) = fobj {G} b → fobj {G} a fobj ⊤ = One amap : {G : SM} { a b : Objs (graph G) } → Arrow (graph G) a b → fobj {G} a → fobj {G} b amap {G} (arrow x) = smap G x amap (○ a) _ = OneObj amap π ( x , _) = x amap π'( _ , x) = x amap ε ( f , x ) = f x amap < f , g > x = (amap f x , amap g x) amap (f *) x = λ y → amap f ( x , y ) fmap : {G : SM} { a b : Objs (graph G) } → Hom (DX G) a b → fobj {G} a → fobj {G} b fmap {G} {a} (id a) = λ z → z fmap {G} (next x f ) = Sets [ amap {G} x o fmap f ] -- CS is a map from Positive logic to Sets -- Sets is CCC, so we have a cartesian closed category generated by a graph -- as a sub category of Sets CS : (G : SM ) → Functor (DX G) (Sets {Level.zero}) FObj (CS G) a = fobj a FMap (CS G) {a} {b} f = fmap {G} {a} {b} f isFunctor (CS G) = isf where _++_ = Category._o_ (DX G) ++idR = IsCategory.identityR ( Category.isCategory ( DX G ) ) distr : {a b c : Obj (DX G)} { f : Hom (DX G) a b } { g : Hom (DX G) b c } → (z : fobj {G} a ) → fmap (g ++ f) z ≡ fmap g (fmap f z) distr {a} {b} {c} {f} {next {b} {d} {c} x g} z = adistr (distr {a} {b} {d} {f} {g} z ) x where adistr : fmap (g ++ f) z ≡ fmap g (fmap f z) → ( x : Arrow (graph G) d c ) → fmap ( next x (g ++ f) ) z ≡ fmap ( next x g ) (fmap f z ) adistr eq x = cong ( λ k → amap x k ) eq distr {a} {b} {b} {f} {id b} z = refl isf : IsFunctor (DX G) Sets fobj fmap IsFunctor.identity isf = extensionality Sets ( λ x → refl ) IsFunctor.≈-cong isf refl = refl IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) ------------------------------------------------------ -- Cart Category of CCC and CCC preserving Functor ------------------------------------------------------ --- --- SubCategoy SC F A is a category with Obj = FObj F, Hom = FMap --- --- CCC ( SC (CS G)) Sets have to be proved --- SM can be eliminated if we have --- sobj (a : vertex g ) → {a} a set have only a --- smap (a b : vertex g ) → {a} → {b} record CCCObj { c₁ c₂ ℓ : Level} : Set (suc (c₁ ⊔ c₂ ⊔ ℓ)) where field cat : Category c₁ c₂ ℓ ccc : CCC cat open CCCObj record CCCMap {c₁ c₂ ℓ : Level} (A B : CCCObj {c₁} {c₂} {ℓ} ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field cmap : Functor (cat A ) (cat B ) ccf : CCC (cat A) → CCC (cat B) open import Category.Cat open CCCMap open import Relation.Binary.Core Cart : {c₁ c₂ ℓ : Level} → Category (suc (c₁ ⊔ c₂ ⊔ ℓ)) (suc (c₁ ⊔ c₂ ⊔ ℓ))(suc (c₁ ⊔ c₂ ⊔ ℓ)) Cart {c₁} {c₂} {ℓ} = record { Obj = CCCObj {c₁} {c₂} {ℓ} ; Hom = CCCMap ; _o_ = λ {A} {B} {C} f g → record { cmap = (cmap f) ○ ( cmap g ) ; ccf = λ _ → ccf f ( ccf g (ccc A )) } ; _≈_ = λ {a} {b} f g → cmap f ≃ cmap g ; Id = λ {a} → record { cmap = identityFunctor ; ccf = λ x → x } ; isCategory = record { isEquivalence = λ {A} {B} → record { refl = λ {f} → let open ≈-Reasoning (CAT) in refl-hom {cat A} {cat B} {cmap f} ; sym = λ {f} {g} → let open ≈-Reasoning (CAT) in sym-hom {cat A} {cat B} {cmap f} {cmap g} ; trans = λ {f} {g} {h} → let open ≈-Reasoning (CAT) in trans-hom {cat A} {cat B} {cmap f} {cmap g} {cmap h} } ; identityL = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idL {cat x} {cat y} {cmap f} {_} {_} ; identityR = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idR {cat x} {cat y} {cmap f} ; o-resp-≈ = λ {x} {y} {z} {f} {g} {h} {i} → IsCategory.o-resp-≈ ( Category.isCategory CAT) {cat x}{cat y}{cat z} {cmap f} {cmap g} {cmap h} {cmap i} ; associative = λ {a} {b} {c} {d} {f} {g} {h} → let open ≈-Reasoning (CAT) in assoc {cat a} {cat b} {cat c} {cat d} {cmap f} {cmap g} {cmap h} }} ------------------------------------------------------ -- Grph Category of Graph and Graph mapping ------------------------------------------------------ open import graph open Graph record GMap {v v' : Level} (x y : Graph {v} {v'} ) : Set (suc (v ⊔ v') ) where field vmap : vertex x → vertex y emap : {a b : vertex x} → edge x a b → edge y (vmap a) (vmap b) open GMap open import Relation.Binary.HeterogeneousEquality using (_≅_;refl ) renaming ( sym to ≅-sym ; trans to ≅-trans ; cong to ≅-cong ) data [_]_==_ {c₁ c₂ } (C : Graph {c₁} {c₂} ) {A B : vertex C} (f : edge C A B) : ∀{X Y : vertex C} → edge C X Y → Set (suc (c₁ ⊔ c₂ )) where mrefl : {g : edge C A B} → (eqv : f ≡ g ) → [ C ] f == g _=m=_ : ∀ {c₁ c₂ } {C D : Graph {c₁} {c₂} } → (F G : GMap C D) → Set (suc (c₂ ⊔ c₁)) _=m=_ {C = C} {D = D} F G = ∀{A B : vertex C} → (f : edge C A B) → [ D ] emap F f == emap G f _&_ : {v v' : Level} {x y z : Graph {v} {v'}} ( f : GMap y z ) ( g : GMap x y ) → GMap x z f & g = record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } Grph : {v v' : Level} → Category (suc (v ⊔ v')) (suc (v ⊔ v')) (suc ( v ⊔ v')) Grph {v} {v'} = record { Obj = Graph {v} {v'} ; Hom = GMap {v} {v'} ; _o_ = _&_ ; _≈_ = _=m=_ ; Id = record { vmap = λ y → y ; emap = λ f → f } ; isCategory = record { isEquivalence = λ {A} {B} → ise ; identityL = λ e → mrefl refl ; identityR = λ e → mrefl refl ; o-resp-≈ = m--resp-≈ ; associative = λ e → mrefl refl }} where msym : {v v' : Level} {x y : Graph {v} {v'} } { f g : GMap x y } → f =m= g → g =m= f msym {_} {_} {x} {y} f=g f = lemma ( f=g f ) where lemma : ∀{a b c d} {f : edge y a b} {g : edge y c d} → [ y ] f == g → [ y ] g == f lemma (mrefl Ff≈Gf) = mrefl (sym Ff≈Gf) mtrans : {v v' : Level} {x y : Graph {v} {v'} } { f g h : GMap x y } → f =m= g → g =m= h → f =m= h mtrans {_} {_} {x} {y} f=g g=h f = lemma ( f=g f ) ( g=h f ) where lemma : ∀{a b c d e f} {p : edge y a b} {q : edge y c d} → {r : edge y e f} → [ y ] p == q → [ y ] q == r → [ y ] p == r lemma (mrefl eqv) (mrefl eqv₁) = mrefl ( trans eqv eqv₁ ) ise : {v v' : Level} {x y : Graph {v} {v'}} → IsEquivalence {_} {suc v ⊔ suc v' } {_} ( _=m=_ {v} {v'} {x} {y}) ise = record { refl = λ f → mrefl refl ; sym = msym ; trans = mtrans } m--resp-≈ : {v v' : Level} {A B C : Graph {v} {v'} } {f g : GMap A B} {h i : GMap B C} → f =m= g → h =m= i → ( h & f ) =m= ( i & g ) m--resp-≈ {_} {_} {A} {B} {C} {f} {g} {h} {i} f=g h=i e = lemma (emap f e) (emap g e) (emap i (emap g e)) (f=g e) (h=i ( emap g e )) where lemma : {a b c d : vertex B } {z w : vertex C } (ϕ : edge B a b) (ψ : edge B c d) (π : edge C z w) → [ B ] ϕ == ψ → [ C ] (emap h ψ) == π → [ C ] (emap h ϕ) == π lemma _ _ _ (mrefl refl) (mrefl refl) = mrefl refl ------------------------------------------------------ --- CCC → Grph Forgetful functor ------------------------------------------------------ ≃-cong : {c₁ c₂ ℓ : Level} (B : Category c₁ c₂ ℓ ) → {a b a' b' : Obj B } → { f f' : Hom B a b } → { g g' : Hom B a' b' } → [_]_~_ B f g → B [ f ≈ f' ] → B [ g ≈ g' ] → [_]_~_ B f' g' ≃-cong B {a} {b} {a'} {b'} {f} {f'} {g} {g'} (refl {g2} eqv) f=f' g=g' = let open ≈-Reasoning B in refl {_} {_} {_} {B} {a'} {b'} {f'} {g'} ( begin f' ≈↑⟨ f=f' ⟩ f ≈⟨ eqv ⟩ g ≈⟨ g=g' ⟩ g' ∎ ) fobj : {c₁ c₂ ℓ : Level} → Obj (Cart {c₁} {c₂} {ℓ} ) → Obj (Grph {c₁} {c₂}) fobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } fmap : {c₁ c₂ ℓ : Level} → {a b : Obj (Cart {c₁} {c₂} {ℓ} ) } → Hom (Cart {c₁} {c₂} {ℓ} ) a b → Hom (Grph {c₁} {c₂}) ( fobj a ) ( fobj b ) fmap f = record { vmap = FObj (cmap f) ; emap = FMap (cmap f) } UX : {c₁ c₂ ℓ : Level} → ( ≈-to-≡ : (A : Category c₁ c₂ ℓ ) → {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → f ≡ g ) → Functor (Cart {c₁} {c₂} {ℓ} ) (Grph {c₁} {c₂}) FObj (UX {c₁} {c₂} {ℓ} ≈-to-≡ ) a = fobj a FMap (UX ≈-to-≡) f = fmap f isFunctor (UX {c₁} {c₂} {ℓ} ≈-to-≡) = isf where -- if we don't need ≈-cong ( i.e. f ≈ g → UX f =m= UX g ), all lemmas are not necessary open import HomReasoning isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grph {c₁} {c₂}) fobj fmap IsFunctor.identity isf {a} {b} {f} e = mrefl refl IsFunctor.distr isf f = mrefl refl IsFunctor.≈-cong isf {a} {b} {f} {g} eq {x} {y} e = lemma (extensionality Sets ( λ z → lemma4 ( ≃-cong (cat b) (eq (id1 (cat a) z)) (IsFunctor.identity (Functor.isFunctor (cmap f))) (IsFunctor.identity (Functor.isFunctor (cmap g))) ))) (eq e) where lemma4 : {x y : vertex (fobj b) } → [_]_~_ (cat b) (id1 (cat b) x) (id1 (cat b) y) → x ≡ y lemma4 (refl eqv) = refl lemma : vmap (fmap f) ≡ vmap (fmap g) → [ cat b ] FMap (cmap f) e ~ FMap (cmap g) e → [ fobj b ] emap (fmap f) e == emap (fmap g) e lemma refl (refl eqv) = mrefl ( ≈-to-≡ (cat b) eqv ) --- --- open ccc-from-graph --- --- sm : {v : Level } → Graph {v} → SM {v} --- SM.graph (sm g) = g --- SM.sobj (sm g) = {!!} --- SM.smap (sm g) = {!!} --- --- HX : {v : Level } ( x : Obj (Grph {v}) ) → Obj (Grph {v}) --- HX {v} x = {!!} -- FObj UX ( record { cat = Sets {v} ; ccc = sets } ) --- --- --- ---