Mercurial > hg > Members > kono > Proof > category
view freyd.agda @ 882:6c69d48e6015
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 Apr 2020 18:47:14 +0900 |
parents | 7a6ee564e3a8 |
children |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level module freyd where open import cat-utility open import HomReasoning open import Relation.Binary.Core open Functor -- C is small full subcategory of A ( C is image of F ) -- but we don't use smallness in this proof record FullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field FSF : Functor A A FSFMap← : { a b : Obj A } → Hom A (FObj FSF a) (FObj FSF b ) → Hom A a b full→ : { a b : Obj A } { x : Hom A (FObj FSF a) (FObj FSF b) } → A [ FMap FSF ( FSFMap← x ) ≈ x ] full← : { a b : Obj A } { x : Hom A (FObj FSF a) (FObj FSF b) } → A [ FSFMap← ( FMap FSF x ) ≈ x ] -- pre-initial record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (F : Functor A A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field preinitialObj : Obj A preinitialArrow : ∀{a : Obj A } → Hom A ( FObj F preinitialObj ) a -- initial object -- now in cat-utility -- record HasInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where -- field -- initial : ∀( a : Obj A ) → Hom A i a -- uniqueness : { a : Obj A } → ( f : Hom A i a ) → A [ f ≈ initial a ] -- A complete catagory has initial object if it has PreInitial-FullSubcategory open NTrans open Limit open IsLimit open FullSubcategory open PreInitial open Complete open Equalizer open IsEqualizer initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (comp : Complete A A) (SFS : FullSubcategory A ) → (PI : PreInitial A (FSF SFS )) → HasInitialObject A (limit-c comp (FSF SFS)) initialFromPreInitialFullSubcategory A comp SFS PI = record { initial = initialArrow ; uniqueness = λ {a} f → lemma1 a f } where F : Functor A A F = FSF SFS FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b FMap← = FSFMap← SFS a00 : Obj A a00 = limit-c comp F lim : ( Γ : Functor A A ) → Limit A A Γ lim Γ = climit comp Γ u : NTrans A A (K A A a00) F u = t0 ( lim F ) equ : {a b : Obj A} → (f g : Hom A a b) → IsEqualizer A (equalizer-e comp f g ) f g equ f g = isEqualizer ( Complete.cequalizer comp f g ) ep : {a b : Obj A} → {f g : Hom A a b} → Obj A ep {a} {b} {f} {g} = equalizer-p comp f g ee : {a b : Obj A} → {f g : Hom A a b} → Hom A (ep {a} {b} {f} {g} ) a ee {a} {b} {f} {g} = equalizer-e comp f g f : Hom A a00 (FObj F (preinitialObj PI ) ) f = TMap u (preinitialObj PI ) initialArrow : ∀( a : Obj A ) → Hom A a00 a initialArrow a = A [ preinitialArrow PI {a} o f ] equ-fi : { a : Obj A} → {f' : Hom A a00 a} → IsEqualizer A ee ( A [ preinitialArrow PI {a} o f ] ) f' equ-fi {a} {f'} = equ ( A [ preinitialArrow PI {a} o f ] ) f' e=id : {e : Hom A a00 a00} → ( {c : Obj A} → A [ A [ TMap u c o e ] ≈ TMap u c ] ) → A [ e ≈ id1 A a00 ] e=id {e} uce=uc = let open ≈-Reasoning (A) in begin e ≈↑⟨ limit-uniqueness (isLimit (lim F)) ( λ {i} → uce=uc ) ⟩ limit (isLimit (lim F)) a00 u ≈⟨ limit-uniqueness (isLimit (lim F)) ( λ {i} → idR ) ⟩ id1 A a00 ∎ kfuc=uc : {c k1 : Obj A} → {p : Hom A k1 a00} → A [ A [ TMap u c o A [ p o A [ preinitialArrow PI {k1} o TMap u (preinitialObj PI) ] ] ] ≈ TMap u c ] kfuc=uc {c} {k1} {p} = let open ≈-Reasoning (A) in begin TMap u c o ( p o ( preinitialArrow PI {k1} o TMap u (preinitialObj PI) )) ≈⟨ cdr assoc ⟩ TMap u c o ((p o preinitialArrow PI) o TMap u (preinitialObj PI)) ≈⟨ assoc ⟩ (TMap u c o ( p o ( preinitialArrow PI {k1} ))) o TMap u (preinitialObj PI) ≈↑⟨ car ( full→ SFS ) ⟩ FMap F (FMap← (TMap u c o p o preinitialArrow PI)) o TMap u (preinitialObj PI) ≈⟨ nat u ⟩ TMap u c o FMap (K A A a00) (FMap← (TMap u c o p o preinitialArrow PI)) ≈⟨⟩ TMap u c o id1 A a00 ≈⟨ idR ⟩ TMap u c ∎ kfuc=1 : {k1 : Obj A} → {p : Hom A k1 a00} → A [ A [ p o A [ preinitialArrow PI {k1} o TMap u (preinitialObj PI) ] ] ≈ id1 A a00 ] kfuc=1 {k1} {p} = e=id ( kfuc=uc ) -- if equalizer has right inverse, f = g lemma2 : (a b : Obj A) {c : Obj A} ( f g : Hom A a b ) {e : Hom A c a } {e' : Hom A a c } ( equ : IsEqualizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) → A [ f ≈ g ] lemma2 a b {c} f g {e} {e'} equ inv-e = let open ≈-Reasoning (A) in let open Equalizer in begin f ≈↑⟨ idR ⟩ f o id1 A a ≈↑⟨ cdr inv-e ⟩ f o ( e o e' ) ≈⟨ assoc ⟩ ( f o e ) o e' ≈⟨ car ( fe=ge equ ) ⟩ ( g o e ) o e' ≈↑⟨ assoc ⟩ g o ( e o e' ) ≈⟨ cdr inv-e ⟩ g o id1 A a ≈⟨ idR ⟩ g ∎ lemma1 : (a : Obj A) (f' : Hom A a00 a) → A [ f' ≈ initialArrow a ] lemma1 a f' = let open ≈-Reasoning (A) in sym ( begin initialArrow a ≈⟨⟩ preinitialArrow PI {a} o f ≈⟨ lemma2 a00 a (A [ preinitialArrow PI {a} o f ]) f' {ee {a00} {a} {A [ preinitialArrow PI {a} o f ]} {f'} } (equ-fi ) (kfuc=1 {ep} {ee} ) ⟩ f' ∎ )