Mercurial > hg > Members > kono > Proof > category
view CatExponetial.agda @ 798:6e6c7ad8ea1c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Apr 2019 06:39:24 +0900 |
parents | d6a6dd305da2 |
children |
line wrap: on
line source
---- -- -- B^A -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> ---- open import Category -- https://github.com/konn/category-agda open import Level module CatExponetial where -- {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ' } open import HomReasoning open import cat-utility -- Object is a Functor : A → B -- Hom is a natural transformation open Functor CObj = λ {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') → Functor A B CHom = λ {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') (f g : CObj A B ) → NTrans A B f g open NTrans Cid : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ' ) {a : CObj A B } → CHom A B a a Cid {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} A B {a} = record { TMap = λ x → id1 B (FObj a x) ; isNTrans = isNTrans1 {a} } where commute : {a : CObj A B } {a₁ b : Obj A} {f : Hom A a₁ b} → B [ B [ FMap a f o id1 B (FObj a a₁) ] ≈ B [ id1 B (FObj a b) o FMap a f ] ] commute {a} {a₁} {b} {f} = let open ≈-Reasoning B in begin FMap a f o id1 B (FObj a a₁) ≈⟨ idR ⟩ FMap a f ≈↑⟨ idL ⟩ id1 B (FObj a b) o FMap a f ∎ isNTrans1 : {a : CObj A B } → IsNTrans A B a a (λ x → id1 B (FObj a x)) isNTrans1 {a} = record { commute = λ {a₁ b f} → commute {a} {a₁} {b} {f} } _+_ : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ' } {a b c : CObj A B } → CHom A B b c → CHom A B a b → CHom A B a c _+_ {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} {A} {B} {a} {b} {c} f g = record { TMap = λ x → B [ TMap f x o TMap g x ] ; isNTrans = isNTrans1 } where commute1 : (a b c : CObj A B ) (f : CHom A B b c) (g : CHom A B a b ) (a₁ b₁ : Obj A) (h : Hom A a₁ b₁) → B [ B [ FMap c h o B [ TMap f a₁ o TMap g a₁ ] ] ≈ B [ B [ TMap f b₁ o TMap g b₁ ] o FMap a h ] ] commute1 a b c f g a₁ b₁ h = let open ≈-Reasoning B in begin B [ FMap c h o B [ TMap f a₁ o TMap g a₁ ] ] ≈⟨ assoc ⟩ B [ B [ FMap c h o TMap f a₁ ] o TMap g a₁ ] ≈⟨ car (nat f) ⟩ B [ B [ TMap f b₁ o FMap b h ] o TMap g a₁ ] ≈↑⟨ assoc ⟩ B [ TMap f b₁ o B [ FMap b h o TMap g a₁ ] ] ≈⟨ cdr (nat g) ⟩ B [ TMap f b₁ o B [ TMap g b₁ o FMap a h ] ] ≈⟨ assoc ⟩ B [ B [ TMap f b₁ o TMap g b₁ ] o FMap a h ] ∎ isNTrans1 : IsNTrans A B a c (λ x → B [ TMap f x o TMap g x ]) isNTrans1 = record { commute = λ {a₁ b₁ h} → commute1 a b c f g a₁ b₁ h } _==_ : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ' } {a b : CObj A B } → CHom A B a b → CHom A B a b → Set (ℓ' ⊔ c₁) _==_ {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} {A} {B} {a} {b} f g = ∀{x} → B [ TMap f x ≈ TMap g x ] infix 4 _==_ open import Relation.Binary.Core isB^A : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ' ) → IsCategory (CObj A B) (CHom A B) _==_ _+_ (Cid A B) isB^A {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} A B = record { isEquivalence = record {refl = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory B )); sym = λ {i j} → sym1 {_} {_} {i} {j} ; trans = λ {i j k} → trans1 {_} {_} {i} {j} {k} } ; identityL = IsCategory.identityL ( Category.isCategory B ) ; identityR = IsCategory.identityR ( Category.isCategory B ) ; o-resp-≈ = λ{a b c f g h i } → o-resp-≈1 {a} {b} {c} {f} {g} {h} {i} ; associative = IsCategory.associative ( Category.isCategory B ) } where sym1 : {a b : CObj A B } {i j : CHom A B a b } → i == j → j == i sym1 {a} {b} {i} {j} eq {x} = let open ≈-Reasoning B in begin TMap j x ≈⟨ sym eq ⟩ TMap i x ∎ trans1 : {a b : CObj A B } {i j k : CHom A B a b} → i == j → j == k → i == k trans1 {a} {b} {i} {j} {k} i=j j=k {x} = let open ≈-Reasoning B in begin TMap i x ≈⟨ i=j ⟩ TMap j x ≈⟨ j=k ⟩ TMap k x ∎ o-resp-≈1 : {a b c : CObj A B } {f g : CHom A B a b} {h i : CHom A B b c } → f == g → h == i → h + f == i + g o-resp-≈1 {a} {b} {c} {f} {g} {h} {i} f=g h=i {x} = let open ≈-Reasoning B in begin TMap h x o TMap f x ≈⟨ resp f=g h=i ⟩ TMap i x o TMap g x ∎ _^_ : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁' c₂' ℓ' ) (B : Category c₁ c₂ ℓ) → Category (suc ℓ' ⊔ (suc c₂' ⊔ (suc c₁' ⊔ (suc ℓ ⊔ (suc c₂ ⊔ suc c₁))))) (suc ℓ' ⊔ (suc c₂' ⊔ (suc c₁' ⊔ (suc ℓ ⊔ (suc c₂ ⊔ suc c₁))))) (ℓ' ⊔ c₁) _^_ {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} B A = record { Obj = CObj A B ; Hom = CHom A B ; _o_ = _+_ ; _≈_ = _==_ ; Id = Cid A B ; isCategory = isB^A A B }