Mercurial > hg > Members > kono > Proof > category
view list-nat.agda @ 608:7194ba55df56
freyd2
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 12 Jun 2017 10:50:02 +0900 |
parents | 92eb707498c7 |
children |
line wrap: on
line source
module list-nat where open import Level postulate A : Set postulate a : A postulate b : A postulate c : A infixr 40 _::_ data List (A : Set ) : Set where [] : List A _::_ : A → List A → List A infixl 30 _++_ _++_ : {A : Set } → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) l1 = a :: [] l2 = a :: b :: a :: c :: [] l3 = l1 ++ l2 data Node ( A : Set ) : Set where leaf : A → Node A node : Node A → Node A → Node A flatten : { A : Set } → Node A → List A flatten ( leaf a ) = a :: [] flatten ( node a b ) = flatten a ++ flatten b n1 = node ( leaf a ) ( node ( leaf b ) ( leaf c )) open import Relation.Binary.PropositionalEquality infixr 20 _==_ data _==_ {A : Set } : List A → List A → Set where reflection : {x : List A} → x == x cong1 : {A : Set } { B : Set } → ( f : List A → List B ) → {x : List A } → {y : List A} → x == y → f x == f y cong1 f reflection = reflection eq-cons : {A : Set } {x y : List A} ( a : A ) → x == y → ( a :: x ) == ( a :: y ) eq-cons a z = cong1 ( λ x → ( a :: x) ) z trans-list : {A : Set } {x y z : List A} → x == y → y == z → x == z trans-list reflection reflection = reflection ==-to-≡ : {A : Set } {x y : List A} → x == y → x ≡ y ==-to-≡ reflection = refl list-id-l : { A : Set } → { x : List A} → [] ++ x == x list-id-l = reflection list-id-r : { A : Set } → ( x : List A ) → x ++ [] == x list-id-r [] = reflection list-id-r (x :: xs) = eq-cons x ( list-id-r xs ) list-assoc : {A : Set } → ( xs ys zs : List A ) → ( ( xs ++ ys ) ++ zs ) == ( xs ++ ( ys ++ zs ) ) list-assoc [] ys zs = reflection list-assoc (x :: xs) ys zs = eq-cons x ( list-assoc xs ys zs ) module ==-Reasoning (A : Set ) where infix 3 _∎ infixr 2 _==⟨_⟩_ _==⟨⟩_ infix 1 begin_ data _IsRelatedTo_ (x y : List A) : Set where relTo : (x≈y : x == y ) → x IsRelatedTo y begin_ : {x : List A } {y : List A} → x IsRelatedTo y → x == y begin relTo x≈y = x≈y _==⟨_⟩_ : (x : List A ) {y z : List A} → x == y → y IsRelatedTo z → x IsRelatedTo z _ ==⟨ x≈y ⟩ relTo y≈z = relTo (trans-list x≈y y≈z) _==⟨⟩_ : (x : List A ) {y : List A} → x IsRelatedTo y → x IsRelatedTo y _ ==⟨⟩ x≈y = x≈y _∎ : (x : List A ) → x IsRelatedTo x _∎ _ = relTo reflection lemma11 : (A : Set ) ( x : List A ) → x == x lemma11 A x = let open ==-Reasoning A in begin x ∎ ++-assoc : (L : Set ) ( xs ys zs : List L ) → (xs ++ ys) ++ zs == xs ++ (ys ++ zs) ++-assoc A [] ys zs = let open ==-Reasoning A in begin -- to prove ([] ++ ys) ++ zs == [] ++ (ys ++ zs) ( [] ++ ys ) ++ zs ==⟨ reflection ⟩ ys ++ zs ==⟨ reflection ⟩ [] ++ ( ys ++ zs ) ∎ ++-assoc A (x :: xs) ys zs = let open ==-Reasoning A in begin -- to prove ((x :: xs) ++ ys) ++ zs == (x :: xs) ++ (ys ++ zs) ((x :: xs) ++ ys) ++ zs ==⟨ reflection ⟩ (x :: (xs ++ ys)) ++ zs ==⟨ reflection ⟩ x :: ((xs ++ ys) ++ zs) ==⟨ cong1 (_::_ x) (++-assoc A xs ys zs) ⟩ x :: (xs ++ (ys ++ zs)) ==⟨ reflection ⟩ (x :: xs) ++ (ys ++ zs) ∎ --data Bool : Set where -- true : Bool -- false : Bool --postulate Obj : Set --postulate Hom : Obj → Obj → Set --postulate id : { a : Obj } → Hom a a --infixr 80 _○_ --postulate _○_ : { a b c : Obj } → Hom b c → Hom a b → Hom a c -- postulate axId1 : {a b : Obj} → ( f : Hom a b ) → f == id ○ f -- postulate axId2 : {a b : Obj} → ( f : Hom a b ) → f == f ○ id --assoc : { a b c d : Obj } → -- (f : Hom c d ) → (g : Hom b c) → (h : Hom a b) → -- (f ○ g) ○ h == f ○ ( g ○ h) --a = Set -- ListObj : {A : Set} → List A -- ListObj = List Set -- ListHom : ListObj → ListObj → Set