view src/Polynominal.agda @ 1026:7916bde5e57b

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 29 Mar 2021 21:25:32 +0900
parents bbbe97d2a5ea
children cc7103f643b7
line wrap: on
line source

open import Category
open import CCC
open import Level
open import HomReasoning 
open import cat-utility

module Polynominal { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( C : CCC A )   where

  open CCC.CCC C
  open coMonad 
  open Functor
  open NTrans
  open import Category.Cat
  
  open ≈-Reasoning A hiding (_∙_)
  SA : (a : Obj A) → Functor A A
  SA a = record {
       FObj = λ x → a ∧ x
     ; FMap = λ f →  < π ,  A [ f o π' ]   >
     ; isFunctor = record {
          identity = sa-id
        ; ≈-cong = λ eq → IsCCC.π-cong isCCC refl-hom (resp refl-hom eq )
        ; distr = sa-distr
       }
    } where
        sa-id :  {b : Obj A} →  < π , ( id1 A b o π'  ) > ≈ id1 A (a ∧ b ) 
        sa-id {b} = begin
           < π , ( id1 A b o π'  ) > ≈⟨ IsCCC.π-cong isCCC (sym idR) (trans-hom idL (sym idR) ) ⟩
           < ( π o id1 A _ ) , ( π' o id1 A _ )  > ≈⟨ IsCCC.e3c isCCC  ⟩
          id1 A (a ∧ b ) ∎
        sa-distr :  {x b c : Obj A} {f : Hom A x b} {g : Hom A b c} →
            < π , (( g o f ) o π') > ≈ < π , ( g o π' ) > o < π , (f o π') > 
        sa-distr {x} {b} {c} {f} {g} = begin
            < π , (( g o f ) o π') > ≈↑⟨ IsCCC.π-cong isCCC (IsCCC.e3a isCCC) ( begin 
               ( g o π' ) o < π , (f o π') >  ≈↑⟨ assoc ⟩ 
                g o ( π'  o < π , (f o π') > )  ≈⟨ cdr (IsCCC.e3b isCCC)  ⟩ 
                g o ( f o π')   ≈⟨ assoc  ⟩ 
               ( g o f ) o π'  ∎ ) ⟩
            < (π o < π , (f o π') >) ,  ( ( g o π' ) o < π , (f o π') >) > ≈↑⟨ IsCCC.distr-π isCCC  ⟩
            < π , ( g o π' ) > o < π , (f o π') > ∎

  SM : (a : Obj A) → coMonad A (SA a)
  SM a = record {
        δ = record { TMap = λ x → < π , id1 A _ > ;  isNTrans = record { commute = δ-comm} }
      ; ε = record { TMap = λ x → π' ; isNTrans =  record { commute = ε-comm } }
      ; isCoMonad = record {
           unity1 = IsCCC.e3b isCCC
         ; unity2 = unity2
         ; assoc = assoc2
        }
     } where
        δ-comm :  {a₁ : Obj A} {b : Obj A} {f : Hom A a₁ b} →
             FMap (_○_ (SA a)  (SA a)) f o < π , id1 A _ > ≈ < π , id1 A _ > o FMap (SA a) f 
        δ-comm {x} {b} {f} = begin
           FMap (_○_ (SA a)  (SA a)) f o < π , id1 A _ > ≈⟨  IsCCC.distr-π isCCC ⟩
           < π o < π , id1 A _ > ,  (FMap (SA a) f o π' ) o < π , id1 A _ > >  ≈⟨ IsCCC.π-cong isCCC (IsCCC.e3a isCCC) (sym assoc) ⟩
           < π ,  FMap (SA a) f o ( π'  o < π , id1 A _ >) >  ≈⟨ IsCCC.π-cong isCCC refl-hom (cdr (IsCCC.e3b isCCC)) ⟩
           < π ,  FMap (SA a) f o id1 A _  >                  ≈⟨  IsCCC.π-cong isCCC refl-hom idR ⟩
           < π ,  FMap (SA a) f  >                            ≈↑⟨   IsCCC.π-cong isCCC  (IsCCC.e3a isCCC) idL ⟩
           < π o  FMap (SA a) f ,  id1 A _ o FMap (SA a) f >  ≈↑⟨  IsCCC.distr-π isCCC   ⟩
           < π , id1 A _ > o FMap (SA a) f  ∎
        ε-comm :  {a₁ : Obj A} {b : Obj A} {f : Hom A a₁ b} → 
             FMap (identityFunctor {_} {_} {_} {A}) f o π'  ≈  π' o FMap (SA a) f 
        ε-comm {_} {_} {f} = sym  (IsCCC.e3b isCCC)
        unity2 :  {a₁ : Obj A} →  FMap (SA a) π' o < π , id1 A _ >  ≈ id1 A (a ∧ a₁)
        unity2 {x} = begin
           FMap (SA a) π' o < π , id1 A _ >                         ≈⟨  IsCCC.distr-π isCCC   ⟩
            < π o < π , id1 A _ > , ( π' o π' ) o < π , id1 A _ > > ≈⟨  IsCCC.π-cong isCCC (IsCCC.e3a isCCC) (sym assoc) ⟩
            < π  ,  π' o ( π'  o < π , id1 A _ > ) >                ≈⟨  IsCCC.π-cong isCCC  refl-hom (cdr (IsCCC.e3b isCCC)) ⟩
            < π  ,  π' o  id1 A _ >                                 ≈⟨  IsCCC.π-cong isCCC  refl-hom  idR ⟩
            < π  ,  π' >                                            ≈⟨  IsCCC.π-id isCCC ⟩
           id1 A (a ∧ x)  ∎
        assoc2 :   {a₁ : Obj A} →  < π , id1 A _ > o < π , id1  A _ > ≈  FMap (SA a) < π , id1 A (a ∧ a₁) > o < π , id1 A _ > 
        assoc2 {x} = begin
            < π , id1 A _ > o < π , id1  A _ >                      ≈⟨  IsCCC.distr-π isCCC ⟩
            < π o < π , id1  A _ > , id1 A _ o < π , id1  A _ > >   ≈⟨  IsCCC.π-cong isCCC  (IsCCC.e3a isCCC) idL  ⟩
            < π  , < π , id1 A _ > >                                ≈↑⟨ IsCCC.π-cong isCCC refl-hom idR ⟩
            < π  , < π , id1 A _ > o  id1 A _ >                     ≈↑⟨ IsCCC.π-cong isCCC refl-hom  (cdr (IsCCC.e3b isCCC)) ⟩
            < π  , < π , id1 A _ > o  ( π'  o < π , id1 A _ > ) >   ≈↑⟨ IsCCC.π-cong isCCC  (IsCCC.e3a isCCC) (sym assoc) ⟩
            < π o < π , id1 A _ > , (< π , id1 A _ > o  π' ) o < π , id1 A _ > > ≈↑⟨  IsCCC.distr-π isCCC  ⟩
           FMap (SA a) < π , id1 A (a ∧ x) > o < π , id1 A _ > ∎
  --
  -- coKleisli category of SM should give the fucntional completeness 
  --

  _∙_ = _[_o_] A

  --
  --   Polynominal (p.57) in Introduction to Higher order categorical logic
  --
  --   Given object a₀ and a of a caterisian closed category A, how does one adjoin an interminate arraow x : a₀ → a to A?
  --   A[x] based on the `assumption' x, as was done in Section 2 (data φ). The formulas of A[x] are the objects of A and the
  --   proofs of A[x] are formed from the arrows of A and the new arrow x :  a₀ → a by the appropriate ules of inference.
  --
  -- Here, A is actualy A[x]. It contains x and all the arrow generated from x.
  -- If we can put constraints on rule i (sub : Hom A b c → Set), then A is strictly smaller than A[x],
  -- that is, a subscategory of A[x].
  --
  --   i   : {b c : Obj A} {k : Hom A b c } → sub k  → φ x k
  --
  -- this makes a few changes, but we don't care.
  -- from page. 51
  --
  data  φ  {a ⊤ : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁  ⊔  c₂ ⊔ ℓ) where
     i   : {b c : Obj A} {k : Hom A b c } → φ x k   
     ii  : φ x {⊤} {a} x
     iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c'  ∧ c''} < f , g > 
     iv  : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ∙ g )
     v   : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' }  (ψ : φ x f )  → φ x {b} {c'' <= c'} ( f * )
     φ-cong   : {b c : Obj A} {k k' : Hom A b c } → A [ k ≈ k' ] → φ x k  → φ x k'
  
  α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) )
  α = < π  ∙ π   , < π'  ∙ π  , π'  > >
  
  -- genetate (a ∧ b) → c proof from  proof b →  c with assumption a
  -- from page. 51
  
  k : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → {z : Hom A b c } → ( y  : φ {a} x∈a z ) → Hom A (a ∧ b) c
  k x∈a {k} i = k ∙ π'
  k x∈a ii = π
  k x∈a (iii ψ χ ) = < k x∈a ψ  , k x∈a χ  >
  k x∈a (iv ψ χ ) = k x∈a ψ  ∙ < π , k x∈a χ  >
  k x∈a (v ψ ) = ( k x∈a ψ  ∙ α ) *
  k x∈a (φ-cong  eq ψ) = k x∈a  ψ

  toφ : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → (z : Hom A b c ) → φ {a} x∈a z  
  toφ {a} {⊤} {b} {c} x∈a z = i

  record PHom {a ⊤ : Obj A } { x : Hom A ⊤ a } (b c : Obj A) : Set (c₁ ⊔ c₂ ⊔ ℓ)  where
    field
       hom : Hom A b c 
       phi : φ x {b} {c} hom

  open PHom

  -- A is A[x] 
  Polynominal :  {a ⊤ : Obj A } ( x : Hom A ⊤ a ) → Category c₁ (c₁ ⊔ c₂ ⊔ ℓ) ℓ 
  Polynominal {a} {⊤} x =  record {
            Obj  = Obj A;
            Hom = λ b c → PHom {a} {⊤} {x} b c ;
            _o_ =  λ{a} {b} {c} x y → record { hom =  hom x ∙ hom y  ; phi = iv (phi x) (phi y) } ;
            _≈_ =  λ x y → A [ hom x ≈ hom y ] ;
            Id  =  λ{a} → record { hom = id1 A a ; phi = i } ;
            isCategory  = record {
                    isEquivalence =  record { sym = sym-hom ; trans = trans-hom ; refl = refl-hom } ;
                    identityL  = λ {a b f} → idL ;
                    identityR  = λ {a b f} → idR ;
                    o-resp-≈  = λ {a b c f g h i} → resp ;
                    associative  = λ{a b c d f g h } → assoc 
               }
           }  

  Hx :  {a ⊤ : Obj A } ( x : Hom A ⊤ a ) → Functor A (Polynominal x)
  Hx {a} x = record {
     FObj = λ a → a
   ; FMap = λ f → record { hom = f ; phi = i }
   ; isFunctor = record {
        identity = refl-hom
      ; distr = refl-hom
      ; ≈-cong = λ eq → eq
     }
   } 

  --
  --  Proposition 6.1
  --
  --  For every polynominal ψ(x) : b → c in an indeterminate x : 1 → a over a cartesian or cartesian closed
  --  category A there is a unique arrow f : a ∧ b → c in A such that f ∙ < x ∙ ○ b , id1 A b > ≈ ψ(x).
  --

  record Functional-completeness {a : Obj A} ( x : Hom A 1 a ) : Set  (c₁ ⊔ c₂ ⊔ ℓ) where
    field 
      fun  : {b c : Obj A} →  PHom {a} {1} {x} b c  → Hom A (a ∧ b) c
      fp   : {b c : Obj A} →  (p : PHom b c)  → A [  fun p ∙ <  x ∙ ○ b   , id1 A b  >  ≈ hom p ] 
      uniq : {b c : Obj A} →  (p : PHom b c)  → (f : Hom A (a ∧ b) c) → A [ f ∙ < x ∙ ○ b   , id1 A b  >  ≈ hom p ] 
         → A [ f  ≈ fun p ]

  π-cong = IsCCC.π-cong isCCC
  e2 = IsCCC.e2 isCCC
  {-# TERMINATING #-}
  functional-completeness : {a : Obj A} ( x : Hom A 1 a ) → Functional-completeness  x 
  functional-completeness {a} x = record {
         fun = λ y → k x (phi y)
       ; fp = fc0
       ; uniq = uniq
     } where 
        open φ
        fc0 :  {b c : Obj A} (p : PHom b c) → A [  k x (phi p) ∙ <  x ∙ ○ b  , id1 A b >  ≈ hom p ]
        fc0 {b} {c} p with phi p
        ... | i {_} {_} {s} = begin
             (s ∙ π') ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩
             s ∙ (π' ∙ < ( x ∙ ○ b ) , id1 A b >) ≈⟨ cdr (IsCCC.e3b isCCC ) ⟩
             s ∙ id1 A b ≈⟨ idR ⟩
             s ∎
        ... | ii = begin
             π ∙ < ( x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.e3a isCCC ⟩
             x ∙ ○ b  ≈↑⟨ cdr (e2 ) ⟩
             x ∙ id1 A b  ≈⟨ idR ⟩
             x ∎
        ... | iii {_} {_} {_} {f} {g} y z  = begin
             < k x y , k x z > ∙ < (x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.distr-π isCCC  ⟩
             < k x y ∙ < (x ∙ ○ b ) , id1 A b > , k x z ∙ < (x ∙ ○ b ) , id1 A b > >
                 ≈⟨ π-cong (fc0 record { hom = f ; phi = y } ) (fc0 record { hom = g ; phi = z } ) ⟩
             < f , g > ≈⟨⟩
             hom p ∎
        ... | iv {_} {_} {d} {f} {g} y z  = begin
             (k x y ∙ < π , k x z >) ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩
             k x y ∙ ( < π , k x z > ∙ < ( x ∙ ○ b ) , id1 A b > ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩
             k x y ∙ ( < π  ∙ < ( x ∙ ○ b ) , id1 A b > ,  k x z  ∙ < ( x ∙ ○ b ) , id1 A b > > )
                 ≈⟨ cdr (π-cong (IsCCC.e3a isCCC) (fc0 record { hom = g ; phi = z} ) ) ⟩
             k x y ∙ ( < x ∙ ○ b  ,  g > ) ≈↑⟨ cdr (π-cong (cdr (e2)) refl-hom ) ⟩
             k x y ∙ ( < x ∙ ( ○ d ∙ g ) ,  g > ) ≈⟨  cdr (π-cong assoc (sym idL)) ⟩
             k x y ∙ ( < (x ∙ ○ d) ∙ g  , id1 A d ∙ g > ) ≈↑⟨ cdr (IsCCC.distr-π isCCC) ⟩
             k x y ∙ ( < x ∙ ○ d ,  id1 A d > ∙ g ) ≈⟨ assoc ⟩
             (k x y ∙  < x ∙ ○ d ,  id1 A d > ) ∙ g  ≈⟨ car (fc0 record { hom = f ; phi = y }) ⟩
             f ∙ g  ∎
        ... | v {_} {_} {_} {f} y = begin
            ( (k x y ∙ < π ∙ π , <  π' ∙  π , π' > >) *) ∙ < x ∙ (○ b) , id1 A b > ≈⟨ IsCCC.distr-* isCCC ⟩
            ( (k x y ∙ < π ∙ π , <  π' ∙  π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) * ≈⟨  IsCCC.*-cong isCCC ( begin
             ( k x y ∙ < π ∙ π , <  π' ∙  π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >   ≈↑⟨ assoc ⟩
              k x y ∙ ( < π ∙ π , <  π' ∙  π , π' > > ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > )   ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩
              k x y ∙ < (π ∙ π) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >  , <  π' ∙  π , π' > ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >  >
                  ≈⟨ cdr (π-cong (sym assoc) (IsCCC.distr-π isCCC )) ⟩
              k x y ∙ < π ∙ (π ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) ,
                <  (π' ∙  π) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > , π'  ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > > >
                    ≈⟨ cdr ( π-cong (cdr (IsCCC.e3a isCCC))( π-cong (sym assoc) (IsCCC.e3b isCCC) )) ⟩
              k x y ∙ < π ∙ ( < x ∙ ○ b , id1 A _ > ∙ π  ) , <  π' ∙  (π ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >) ,  π'  > >
                ≈⟨  cdr ( π-cong refl-hom (  π-cong (cdr (IsCCC.e3a isCCC)) refl-hom )) ⟩
              k x y ∙ < (π ∙ ( < x ∙ ○ b , id1 A _ > ∙ π ) ) , <  π' ∙  (< x ∙ ○ b , id1 A _ > ∙ π ) , π' > >
                ≈⟨ cdr ( π-cong  assoc (π-cong  assoc refl-hom )) ⟩
              k x y ∙ < (π ∙  < x ∙ ○ b , id1 A _ > ) ∙ π   , <  (π' ∙  < x ∙ ○ b , id1 A _ > ) ∙ π  , π' > >
                  ≈⟨ cdr (π-cong (car (IsCCC.e3a isCCC)) (π-cong (car (IsCCC.e3b isCCC)) refl-hom ))  ⟩
              k x y ∙ < ( (x ∙ ○ b ) ∙ π )  , <   id1 A _  ∙ π  , π' > >    ≈⟨ cdr (π-cong (sym assoc)  (π-cong idL refl-hom ))  ⟩
              k x y ∙ <  x ∙ (○ b  ∙ π )  , <    π  , π' > >    ≈⟨   cdr (π-cong (cdr (e2)) (IsCCC.π-id isCCC) ) ⟩
              k x y ∙  < x ∙ ○ _ , id1 A _  >    ≈⟨ fc0 record { hom = f ; phi = y} ⟩
             f  ∎ )  ⟩
             f * ∎ 
        ... | φ-cong {_} {_} {f} {f'} f=f' y = trans-hom (fc0 record { hom = f ; phi = y}) f=f'
        --
        --   f ∙ <  x ∙ ○ b  , id1 A b >  ≈ hom p →  f ≈ k x (phi p)
        -- 
        uniq :  {b c : Obj A} (p : PHom b c) (f : Hom A (a ∧ b) c) →
            A [  f ∙ <  x ∙ ○ b  , id1 A b >  ≈ hom p ] → A [ f ≈ k x (phi p) ]
        uniq {b} {c} p f fx=p = sym (begin 
              k x (phi p) ≈⟨ fc1 p ⟩
              k x {hom p} i ≈⟨⟩
              hom p ∙ π'  ≈↑⟨ car fx=p ⟩
              (f ∙ <  x ∙ ○ b  , id1 A b > ) ∙ π' ≈↑⟨ assoc ⟩
              f ∙ (<  x ∙ ○ b  , id1 A b >  ∙ π') ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩
              f ∙ <  (x ∙ ○ b) ∙ π'   , id1 A b ∙ π' >   ≈⟨⟩
              f ∙ <  k x {x ∙ ○ b} i  , id1 A b ∙ π' >   ≈⟨ cdr (π-cong (sym (fc1 record { hom =  x ∙ ○ b  ; phi = iv ii i } )) refl-hom) ⟩
              f ∙ <  k x (phi record { hom = x ∙ ○ b ; phi = iv ii i })  , id1 A b ∙ π' >   ≈⟨ cdr (π-cong refl-hom idL) ⟩
              f ∙  <  π ∙ < π , (○ b ∙ π' ) >  , π' >   ≈⟨ cdr (π-cong (IsCCC.e3a isCCC)  refl-hom) ⟩
              f ∙  < π , π' >  ≈⟨ cdr (IsCCC.π-id isCCC) ⟩
              f ∙  id1 A _ ≈⟨ idR ⟩
              f ∎  ) where
          -- fc1 may be wrong. is should be a field of PHom, and  k x {x ∙ ○ b} i may be proved standalone.
          fc1 : {b c : Obj A} (p : PHom b c) → A [ k x (phi p)  ≈ k x {hom p} i ]    -- it looks like (*) in page 60
          fc1 {b} {c} p = uniq record { hom =  hom p ; phi = i }  ( k x (phi p)) ( begin -- non terminating because of the record, which we may avoid
               k x (phi p) ∙ < x ∙ ○ b , id1 A b > ≈⟨ fc0 p ⟩
               hom p ∎  )
        

-- end