Mercurial > hg > Members > kono > Proof > category
view SetsCompleteness.agda @ 522:8fd030f9f572
Equalizer in Sets done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Mar 2017 19:41:44 +0900 |
parents | 00bf9eca0db7 |
children | 4b097a010fd9 |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level open import Category.Sets module SetsCompleteness where open import HomReasoning open import cat-utility open import Relation.Binary.Core open import Function import Relation.Binary.PropositionalEquality -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ ≡cong = Relation.Binary.PropositionalEquality.cong record Σ {a} (A : Set a) (B : Set a) : Set a where constructor _,_ field proj₁ : A proj₂ : B open Σ public SetsProduct : { c₂ : Level} → CreateProduct ( Sets { c₂} ) SetsProduct { c₂ } = record { product = λ a b → Σ a b ; π1 = λ a b → λ ab → (proj₁ ab) ; π2 = λ a b → λ ab → (proj₂ ab) ; isProduct = λ a b → record { _×_ = λ f g x → record { proj₁ = f x ; proj₂ = g x } -- ( f x , g x ) ; π1fxg=f = refl ; π2fxg=g = refl ; uniqueness = refl ; ×-cong = λ {c} {f} {f'} {g} {g'} f=f g=g → prod-cong a b f=f g=g } } where prod-cong : ( a b : Obj (Sets {c₂}) ) {c : Obj (Sets {c₂}) } {f f' : Hom Sets c a } {g g' : Hom Sets c b } → Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ] prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl record iproduct {a} (I : Set a) ( pi0 : I → Set a ) : Set a where field pi1 : ( i : I ) → pi0 i open iproduct SetsIProduct : { c₂ : Level} → (I : Obj Sets) (ai : I → Obj Sets ) → IProduct ( Sets { c₂} ) I SetsIProduct I fi = record { ai = fi ; iprod = iproduct I fi ; pi = λ i prod → pi1 prod i ; isIProduct = record { iproduct = iproduct1 ; pif=q = pif=q ; ip-uniqueness = ip-uniqueness ; ip-cong = ip-cong } } where iproduct1 : {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (iproduct I fi) iproduct1 {q} qi x = record { pi1 = λ i → (qi i) x } pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → pi1 prod i) o iproduct1 qi ] ≈ qi i ] pif=q {q} qi {i} = refl ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (iproduct I fi)} → Sets [ iproduct1 (λ i → Sets [ (λ prod → pi1 prod i) o h ]) ≈ h ] ip-uniqueness = refl ipcx : {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 qi x ≡ iproduct1 qi' x ipcx {q} {qi} {qi'} qi=qi x = begin record { pi1 = λ i → (qi i) x } ≡⟨ ≡cong ( λ QIX → record { pi1 = QIX } ) ( extensionality Sets (λ i → ≡cong ( λ f → f x ) (qi=qi i) )) ⟩ record { pi1 = λ i → (qi' i) x } ∎ where open import Relation.Binary.PropositionalEquality open ≡-Reasoning ip-cong : {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → Sets [ iproduct1 qi ≈ iproduct1 qi' ] ip-cong {q} {qi} {qi'} qi=qi = extensionality Sets ( ipcx qi=qi ) -- -- e f -- c -------→ a ---------→ b f ( f' -- ^ . ---------→ -- | . g -- |k . -- | . h --y : d -- cf. https://github.com/danr/Agda-projects/blob/master/Category-Theory/Equalizer.agda data sequ {c : Level} (A B : Set c) ( f g : A → B ) : Set c where elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g open sequ SetsEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) → Equalizer Sets f g SetsEqualizer {c₂} a b f g = record { equalizer-c = sequ a b f g ; equalizer = λ e → equ e ; isEqualizer = record { fe=ge = fe=ge ; k = k ; ek=h = λ {d} {h} {eq} → ek=h {d} {h} {eq} ; uniqueness = uniqueness } } where equ : ( sequ a b f g ) → a equ (elem x eq) = x fe=ge0 : (x : sequ a b f g) → (Sets [ f o (λ e → equ e) ]) x ≡ (Sets [ g o (λ e → equ e) ]) x fe=ge0 (elem x eq ) = eq fe=ge : Sets [ Sets [ f o (λ e → equ e ) ] ≈ Sets [ g o (λ e → equ e ) ] ] fe=ge = extensionality Sets (fe=ge0 ) k : {d : Obj Sets} (h : Hom Sets d a) → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g) k {d} h eq = λ x → elem (h x) ( ≡cong ( λ y → y x ) eq ) ek=h : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e ) o k h eq ] ≈ h ] ek=h {d} {h} {eq} = refl fhy=ghy : {d : Obj Sets } { h : Hom Sets d a } {y : d } → (fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]) → f (h y) ≡ g (h y) fhy=ghy {d} {h} {y} fh=gh = ≡cong ( λ f → f y ) fh=gh irr : {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≡ eq' irr refl refl = refl elm-cong : (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' ) lemma1 : { c₂ : Level } {a b : Obj (Sets { c₂})} {f g : Hom Sets a b} → Sets [ f ≈ g ] → (x : a ) → f x ≡ g x lemma1 refl x = refl lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x) lemma5 refl x = refl -- somehow this is not equal to lemma1 uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ ( x : d ) → elm-cong ( k h fh=gh x) ( k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x ) ) open Functor open NTrans record ΓObj { c₂ } ( I : Set c₂ ) : Set c₂ where field obj : I open ΓObj record ΓMap { c₂ } {a b : Set c₂ } ( f : a → b ) : Set c₂ where field map : ΓObj a → ΓObj b open ΓMap fmap : { c₂ : Level} {a b : Set c₂ } → (f : a → b ) → ΓMap f fmap {a} {b} f = record { map = λ aobj → record { obj = f ( obj aobj ) } } Γ : { c₂ : Level } → Functor (Sets { c₂}) (Sets { c₂}) Γ { c₂} = record { FObj = ΓObj ; FMap = ( λ f → map (fmap f )) ; isFunctor = record { identity = λ {b} → refl ; distr = λ {a} {b} {c} {f} {g} → refl ; ≈-cong = cong1 } } where cong1 : {A B : Obj Sets} {f g : Hom Sets A B} → Sets [ f ≈ g ] → Sets [ map (fmap f) ≈ map (fmap g) ] cong1 refl = refl record Slimit { c₂ } (I : Set c₂) ( sobj : I → Set c₂ ) (smap : { a b : Set c₂ } ( f : a → b ) → Set c₂ ) : Set c₂ where field sm : I → I s-t0 : (i : I ) → sobj i open Slimit -- SetsLimit : { c₂ : Level} → Limit Sets Sets Γ -- SetsLimit { c₂} = record { -- a0 = Slimit (Obj Sets) {!!} ΓMap -- ; t0 = record { -- TMap = λ i → λ lim → s-t0 lim {!!} -- ; isNTrans = record { commute = {!!} } -- } -- ; isLimit = record { -- limit = {!!} -- ; t0f=t = {!!} -- ; limit-uniqueness = {!!} -- } -- } where -- comm1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap Γ f o (λ lim → s-t0 lim ? ) ] ≈ -- Sets [ (λ lim → s-t0 lim ?) o FMap (K Sets Sets (Slimit (Obj Sets) ΓObj (λ {a} {b} → ΓMap))) f ] ] -- comm1 {a} {b} {f} = {!!}