Mercurial > hg > Members > kono > Proof > category
view pullback.agda @ 745:9dbbbb295a09
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 08 Dec 2017 18:36:31 +0900 |
parents | 984518c56e96 |
children | 6b4bd02efd80 |
line wrap: on
line source
-- Pullback from product and equalizer -- -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> ---- open import Category -- https://github.com/konn/category-agda open import Level module pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ') ( Γ : Functor I A ) where open import HomReasoning open import cat-utility -- -- Pullback from equalizer and product -- f -- a ------→ c -- ^ ^ -- π1 | |g -- | | -- axb -----→ b -- ^ π2 -- | -- | e = equalizer (f π1) (g π1) -- | -- d <------------------ d' -- k (π1' × π2' ) open Equalizer open IsEqualizer open IsProduct pullback-from : {a b c : Obj A} ( f : Hom A a c ) ( g : Hom A b c ) ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) ( prod : ( a b : Obj A ) → Product A a b ) → Pullback A f g pullback-from {a} {b} {c} f g eqa prod0 = record { ab = d ; π1 = A [ π1 o e ] ; π2 = A [ π2 o e ] ; isPullback = record { commute = commute1 ; pullback = p1 ; π1p=π1 = λ {d} {π1'} {π2'} {eq} → π1p=π11 {d} {π1'} {π2'} {eq} ; π2p=π2 = λ {d} {π1'} {π2'} {eq} → π2p=π21 {d} {π1'} {π2'} {eq} ; uniqueness = uniqueness1 } } where axb : Obj A axb = Product.product (prod0 a b) π1 : Hom A axb a π1 = Product.π1 (prod0 a b ) π2 : Hom A axb b π2 = Product.π2 (prod0 a b ) d : Obj A d = equalizer-c (eqa (A [ f o π1 ]) (A [ g o π2 ])) e : Hom A d axb e = equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) prod = Product.isProduct (prod0 a b) commute1 : A [ A [ f o A [ π1 o e ] ] ≈ A [ g o A [ π2 o e ] ] ] commute1 = let open ≈-Reasoning (A) in begin f o ( π1 o e ) ≈⟨ assoc ⟩ ( f o π1 ) o e ≈⟨ fe=ge (isEqualizer (eqa (A [ f o π1 ]) (A [ g o π2 ]))) ⟩ ( g o π2 ) o e ≈↑⟨ assoc ⟩ g o ( π2 o e ) ∎ lemma1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → A [ A [ A [ f o π1 ] o (prod × π1') π2' ] ≈ A [ A [ g o π2 ] o (prod × π1') π2' ] ] lemma1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in begin ( f o π1 ) o (prod × π1') π2' ≈↑⟨ assoc ⟩ f o ( π1 o (prod × π1') π2' ) ≈⟨ cdr (π1fxg=f prod) ⟩ f o π1' ≈⟨ eq ⟩ g o π2' ≈↑⟨ cdr (π2fxg=g prod) ⟩ g o ( π2 o (prod × π1') π2' ) ≈⟨ assoc ⟩ ( g o π2 ) o (prod × π1') π2' ∎ p1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d' d p1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in k (isEqualizer (eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ))) (_×_ prod π1' π2' ) ( lemma1 eq ) π1p=π11 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) ) ] o p1 eq ] ≈ π1' ] π1p=π11 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in begin ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) ) ) o p1 eq ≈⟨⟩ ( π1 o e) o k (isEqualizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) )) (_×_ prod π1' π2' ) (lemma1 eq) ≈↑⟨ assoc ⟩ π1 o ( e o k (isEqualizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) )) (_×_ prod π1' π2' ) (lemma1 eq) ) ≈⟨ cdr ( ek=h (isEqualizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ))) ⟩ π1 o (_×_ prod π1' π2' ) ≈⟨ π1fxg=f prod ⟩ π1' ∎ π2p=π21 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) ) ] o p1 eq ] ≈ π2' ] π2p=π21 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in begin ( π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) ) ) o p1 eq ≈⟨⟩ ( π2 o e) o k (isEqualizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) )) (_×_ prod π1' π2' ) (lemma1 eq) ≈↑⟨ assoc ⟩ π2 o ( e o k (isEqualizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) )) (_×_ prod π1' π2' ) (lemma1 eq) ) ≈⟨ cdr ( ek=h (isEqualizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ))) ⟩ π2 o (_×_ prod π1' π2' ) ≈⟨ π2fxg=g prod ⟩ π2' ∎ uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → {eq1 : A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π1' ]} → {eq2 : A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π2' ]} → A [ p1 eq ≈ p' ] uniqueness1 {d'} p' {π1'} {π2'} {eq} {eq1} {eq2} = let open ≈-Reasoning (A) in begin p1 eq ≈⟨⟩ k (isEqualizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) )) (_×_ prod π1' π2' ) (lemma1 eq) ≈⟨ IsEqualizer.uniqueness (isEqualizer (eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) )) ( begin e o p' ≈⟨⟩ equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p' ≈↑⟨ IsProduct.uniqueness prod ⟩ (prod × ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p') ) ( π2 o (equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p')) ≈⟨ ×-cong prod (assoc) (assoc) ⟩ (prod × (A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ])) (A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ]) ≈⟨ ×-cong prod eq1 eq2 ⟩ ((prod × π1') π2') ∎ ) ⟩ p' ∎ -------------------------------- -- -- If we have two limits on c and c', there are isomorphic pair h, h' open Limit open IsLimit open NTrans iso-l : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( lim : Limit I A Γ ) → ( lim' : Limit I A Γ ) → Hom A (a0 lim )(a0 lim') iso-l I Γ lim lim' = limit (isLimit lim') (a0 lim) ( t0 lim) iso-r : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( lim : Limit I A Γ ) → ( lim' : Limit I A Γ ) → Hom A (a0 lim') (a0 lim) iso-r I Γ lim lim' = limit (isLimit lim) (a0 lim') (t0 lim') iso-lr : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( lim : Limit I A Γ ) → ( lim' : Limit I A Γ ) → ∀{ i : Obj I } → A [ A [ iso-l I Γ lim lim' o iso-r I Γ lim lim' ] ≈ id1 A (a0 lim') ] iso-lr I Γ lim lim' {i} = let open ≈-Reasoning (A) in begin iso-l I Γ lim lim' o iso-r I Γ lim lim' ≈⟨⟩ limit (isLimit lim') (a0 lim) ( t0 lim) o limit (isLimit lim) (a0 lim') (t0 lim') ≈↑⟨ limit-uniqueness (isLimit lim') ( λ {i} → ( begin TMap (t0 lim') i o ( limit (isLimit lim') (a0 lim) (t0 lim) o limit (isLimit lim) (a0 lim') (t0 lim') ) ≈⟨ assoc ⟩ ( TMap (t0 lim') i o limit (isLimit lim') (a0 lim) (t0 lim) ) o limit (isLimit lim) (a0 lim') (t0 lim') ≈⟨ car ( t0f=t (isLimit lim') ) ⟩ TMap (t0 lim) i o limit (isLimit lim) (a0 lim') (t0 lim') ≈⟨ t0f=t (isLimit lim) ⟩ TMap (t0 lim') i ∎) ) ⟩ limit (isLimit lim') (a0 lim') (t0 lim') ≈⟨ limit-uniqueness (isLimit lim') idR ⟩ id (a0 lim' ) ∎ open import CatExponetial open Functor -------------------------------- -- -- Constancy Functor KI : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) → Functor A ( A ^ I ) KI { c₁'} {c₂'} {ℓ'} I = record { FObj = λ a → K I A a ; FMap = λ f → record { -- NTrans I A (K I A a) (K I A b) TMap = λ a → f ; isNTrans = record { commute = λ {a b f₁} → commute1 {a} {b} {f₁} f } } ; isFunctor = let open ≈-Reasoning (A) in record { ≈-cong = λ f=g {x} → f=g ; identity = refl-hom ; distr = refl-hom } } where commute1 : {a b : Obj I} {f₁ : Hom I a b} → {a' b' : Obj A} → (f : Hom A a' b' ) → A [ A [ FMap (K I A b') f₁ o f ] ≈ A [ f o FMap (K I A a') f₁ ] ] commute1 {a} {b} {f₁} {a'} {b'} f = let open ≈-Reasoning (A) in begin FMap (K I A b') f₁ o f ≈⟨ idL ⟩ f ≈↑⟨ idR ⟩ f o FMap (K I A a') f₁ ∎ --------- -- -- Limit Constancy Functor F : A → A^I has right adjoint -- -- we are going to prove universal mapping --------- -- -- limit gives co universal mapping ( i.e. adjunction ) -- -- F = KI I : Functor A (A ^ I) -- U = λ b → A0 (lim b {a0 b} {t0 b} -- ε = λ b → T0 ( lim b {a0 b} {t0 b} ) -- -- a0 : Obj A and t0 : NTrans K Γ come from the limit limit2couniv : ( lim : ( Γ : Functor I A ) → Limit I A Γ ) → coUniversalMapping A ( A ^ I ) (KI I) limit2couniv lim = record { U = λ b → a0 ( lim b) ; ε = λ b → t0 (lim b) ; _*' = λ {b} {a} k → limit (isLimit (lim b )) a k ; iscoUniversalMapping = record { couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ; couniquness = couniquness2 } } where couniversalMapping1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} → A ^ I [ A ^ I [ t0 (lim b) o FMap (KI I) (limit (isLimit (lim b)) a f) ] ≈ f ] couniversalMapping1 {b} {a} {f} {i} = let open ≈-Reasoning (A) in begin TMap (t0 (lim b )) i o TMap ( FMap (KI I) (limit (isLimit (lim b )) a f) ) i ≈⟨⟩ TMap (t0 (lim b)) i o (limit (isLimit (lim b)) a f) ≈⟨ t0f=t (isLimit (lim b)) ⟩ TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ] ∎ couniquness2 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (a0 (lim b ))} → ( ∀ { i : Obj I } → A [ A [ TMap (t0 (lim b )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] ) → A [ limit (isLimit (lim b )) a f ≈ g ] couniquness2 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin limit (isLimit (lim b )) a f ≈⟨ limit-uniqueness (isLimit ( lim b )) lim-g=f ⟩ g ∎ univ2limit : ( univ : coUniversalMapping A (A ^ I) (KI I) ) → ( Γ : Functor I A ) → Limit I A Γ univ2limit univ Γ = record { a0 = (coUniversalMapping.U univ ) Γ ; t0 = (coUniversalMapping.ε univ ) Γ ; isLimit = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } } where U : Obj (A ^ I) → Obj A U b = coUniversalMapping.U univ b ε : ( b : Obj (A ^ I ) ) → NTrans I A (FObj (KI I) (U b)) b ε b = coUniversalMapping.ε univ b limit1 : (a : Obj A) → NTrans I A (FObj (KI I) a) Γ → Hom A a (U Γ) limit1 a t = coUniversalMapping._*' univ {_} {a} t t0f=t1 : {a : Obj A} {t : NTrans I A (K I A a) Γ} {i : Obj I} → A [ A [ TMap (ε Γ) i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap (ε Γ) i o limit1 a t ≈⟨⟩ TMap (ε Γ) i o coUniversalMapping._*' univ t ≈⟨ coIsUniversalMapping.couniversalMapping ( coUniversalMapping.iscoUniversalMapping univ) {Γ} {a} {t} ⟩ TMap t i ∎ limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I A a ) Γ } → { f : Hom A a (U Γ)} → ( ∀ { i : Obj I } → A [ A [ TMap (ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} εf=t = let open ≈-Reasoning (A) in begin coUniversalMapping._*' univ t ≈⟨ ( coIsUniversalMapping.couniquness ( coUniversalMapping.iscoUniversalMapping univ) ) εf=t ⟩ f ∎ -- another form of uniqueness of a product lemma-p0 : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( prod : IsProduct A a b ab π1 π2 ) → A [ _×_ prod π1 π2 ≈ id1 A ab ] lemma-p0 a b ab π1 π2 prod = let open ≈-Reasoning (A) in begin _×_ prod π1 π2 ≈↑⟨ ×-cong prod idR idR ⟩ _×_ prod (A [ π1 o id1 A ab ]) (A [ π2 o id1 A ab ]) ≈⟨ IsProduct.uniqueness prod ⟩ id1 A ab ∎ open IProduct open IsIProduct open Equalizer -- -- limit from equalizer and product -- -- Γu -- → Γj → Γk ← -- / ↑ ↑ \ -- proj j / | | \ proj k -- / μu| |μu \ Equalizer have to be independent from j and k -- | | | | so we need products of Obj I and Hom I -- |product of Hom I | -- | ↑ ↑ | K u = id lim -- | f(id)} | | -- | | |g(Γ) | lim = K j -----------→ K k = lim -- | | | | | u | -- \ | | / proj j o e = ε j | | ε k = proj k o e -- product of Obj I μ u o g o e | | μ u o f o e -- ↑ | | -- | e = equalizer f g | | -- | ↓ ↓ -- lim ←---------------- d' Γ j ----------→ Γ k -- k ( product pi ) Γ u -- Γ u o ε j = ε k -- -- homprod should be written by IProduct -- If I is locally small, this is iso to a set record homprod {c : Level } : Set (suc c₁' ⊔ suc c₂' ) where field hom-j : Obj I hom-k : Obj I hom : Hom I hom-j hom-k open homprod Homprod : {j k : Obj I} (u : Hom I j k) → homprod {c₁} Homprod {j} {k} u = record {hom-j = j ; hom-k = k ; hom = u} limit-from : ( prod : {c : Level} { I : Set c } → ( ai : I → Obj A ) → IProduct I A ai ) ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) → Limit I A Γ limit-from prod eqa = record { a0 = d ; t0 = cone-ε ; isLimit = record { limit = λ a t → cone1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } } where p0 : Obj A p0 = iprod (prod (FObj Γ)) Fcod : homprod {c₁} → Obj A Fcod = λ u → FObj Γ ( hom-k u ) f : Hom A p0 (iprod (prod Fcod)) f = iproduct (isIProduct (prod Fcod)) (λ u → pi (prod (FObj Γ)) (hom-k u )) g : Hom A p0 (iprod (prod Fcod)) g = iproduct (isIProduct (prod Fcod)) (λ u → A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u ) ] ) equ-ε : Equalizer A g f equ-ε = eqa g f d : Obj A d = equalizer-c equ-ε e : Hom A d p0 e = equalizer equ-ε equ = isEqualizer equ-ε -- projection of the product of Obj I proj : (i : Obj I) → Hom A p0 (FObj Γ i) proj = pi ( prod (FObj Γ) ) prodΓ = isIProduct ( prod (FObj Γ) ) -- projection of the product of Hom I μ : {j k : Obj I} → (u : Hom I j k ) → Hom A (iprod (prod Fcod)) (Fcod (Homprod u)) μ u = pi (prod Fcod ) (Homprod u) cone-ε : NTrans I A (K I A (equalizer-c equ-ε ) ) Γ cone-ε = record { TMap = λ i → tmap i ; isNTrans = record { commute = commute1 } } where tmap : (i : Obj I) → Hom A (FObj (K I A d) i) (FObj Γ i) tmap i = A [ proj i o e ] commute1 : {j k : Obj I} {u : Hom I j k} → A [ A [ FMap Γ u o tmap j ] ≈ A [ tmap k o FMap (K I A d) u ] ] commute1 {j} {k} {u} = let open ≈-Reasoning (A) in begin FMap Γ u o tmap j ≈⟨⟩ FMap Γ u o ( proj j o e ) ≈⟨ assoc ⟩ ( FMap Γ u o pi (prod (FObj Γ)) j ) o e ≈↑⟨ car ( pif=q (isIProduct (prod Fcod )) ) ⟩ ( μ u o g ) o e ≈↑⟨ assoc ⟩ μ u o (g o e ) ≈⟨ cdr ( fe=ge (isEqualizer equ-ε )) ⟩ μ u o (f o e ) ≈⟨ assoc ⟩ (μ u o f ) o e ≈⟨ car ( pif=q (isIProduct (prod Fcod ))) ⟩ pi (prod (FObj Γ)) k o e ≈⟨⟩ proj k o e ≈↑⟨ idR ⟩ (proj k o e ) o id1 A d ≈⟨⟩ tmap k o FMap (K I A d) u ∎ -- an arrow to our product of Obj I ( is an equalizer because of commutativity of t ) h : {a : Obj A} → (t : NTrans I A (K I A a) Γ ) → Hom A a p0 h t = iproduct prodΓ (TMap t) fh=gh : (a : Obj A) → (t : NTrans I A (K I A a) Γ ) → A [ A [ g o h t ] ≈ A [ f o h t ] ] fh=gh a t = let open ≈-Reasoning (A) in begin g o h t ≈↑⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( g o h t )) ≈⟨ ip-cong (isIProduct (prod Fcod)) ( λ u → begin pi (prod Fcod) u o ( g o h t ) ≈⟨ assoc ⟩ ( pi (prod Fcod) u o g ) o h t ≈⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ (FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ) o h t ≈↑⟨ assoc ⟩ FMap Γ (hom u) o (pi (prod (FObj Γ)) (hom-j u) o h t ) ≈⟨ cdr ( pif=q prodΓ ) ⟩ FMap Γ (hom u) o TMap t (hom-j u) ≈⟨ IsNTrans.commute (isNTrans t) ⟩ TMap t (hom-k u) o id1 A a ≈⟨ idR ⟩ TMap t (hom-k u) ≈↑⟨ pif=q prodΓ ⟩ pi (prod (FObj Γ)) (hom-k u) o h t ≈↑⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ (pi (prod Fcod) u o f ) o h t ≈↑⟨ assoc ⟩ pi (prod Fcod) u o ( f o h t ) ∎ ) ⟩ iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( f o h t )) ≈⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ f o h t ∎ cone1 : (a : Obj A) → NTrans I A (K I A a) Γ → Hom A a d cone1 a t = k equ (h t) ( fh=gh a t ) t0f=t1 : {a : Obj A} {t : NTrans I A (K I A a) Γ} {i : Obj I} → A [ A [ TMap cone-ε i o cone1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap cone-ε i o cone1 a t ≈⟨⟩ ( ( proj i ) o e ) o k equ (h t) (fh=gh a t) ≈↑⟨ assoc ⟩ proj i o ( e o k equ (h t) (fh=gh a t ) ) ≈⟨ cdr ( ek=h equ) ⟩ proj i o h t ≈⟨ pif=q prodΓ ⟩ TMap t i ∎ limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K I A a) Γ} {f : Hom A a d} → ({i : Obj I} → A [ A [ TMap cone-ε i o f ] ≈ TMap t i ]) → A [ cone1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin cone1 a t ≈⟨⟩ k equ (h t) (fh=gh a t) ≈⟨ IsEqualizer.uniqueness equ ( begin e o f ≈↑⟨ ip-uniqueness prodΓ ⟩ iproduct prodΓ (λ i → ( proj i o ( e o f ) ) ) ≈⟨ ip-cong prodΓ ( λ i → begin proj i o ( e o f ) ≈⟨ assoc ⟩ ( proj i o e ) o f ≈⟨ lim=t {i} ⟩ TMap t i ∎ ) ⟩ h t ∎ ) ⟩ f ∎ -- -- -- Adjoint functor preserves limits -- -- open import Category.Cat ta1 : { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') ( Γ : Functor I B ) ( lim : Obj B ) ( tb : NTrans I B ( K I B lim ) Γ ) → ( U : Functor B A) → NTrans I A ( K I A (FObj U lim) ) (U ○ Γ) ta1 B Γ lim tb U = record { TMap = TMap (Functor*Nat I A U tb) ; isNTrans = record { commute = λ {a} {b} {f} → let open ≈-Reasoning (A) in begin FMap (U ○ Γ) f o TMap (Functor*Nat I A U tb) a ≈⟨ nat ( Functor*Nat I A U tb ) ⟩ TMap (Functor*Nat I A U tb) b o FMap (U ○ K I B lim) f ≈⟨ cdr (IsFunctor.identity (isFunctor U) ) ⟩ TMap (Functor*Nat I A U tb) b o FMap (K I A (FObj U lim)) f ∎ } } adjoint-preseve-limit : { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') ( Γ : Functor I B ) ( limitb : Limit I B Γ ) → ( adj : Adjunction A B ) → Limit I A (Adjunction.U adj ○ Γ) adjoint-preseve-limit B Γ limitb adj = record { a0 = FObj U lim ; t0 = ta1 B Γ lim tb U ; isLimit = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } } where U : Functor B A U = Adjunction.U adj F : Functor A B F = Adjunction.F adj η : NTrans A A identityFunctor ( U ○ F ) η = Adjunction.η adj ε : NTrans B B ( F ○ U ) identityFunctor ε = Adjunction.ε adj ta = ta1 B Γ (a0 limitb) (t0 limitb) U tb = t0 limitb lim = a0 limitb tfmap : (a : Obj A) → NTrans I A (K I A a) (U ○ Γ) → (i : Obj I) → Hom B (FObj (K I B (FObj F a)) i) (FObj Γ i) tfmap a t i = B [ TMap ε (FObj Γ i) o FMap F (TMap t i) ] tF : (a : Obj A) → NTrans I A (K I A a) (U ○ Γ) → NTrans I B (K I B (FObj F a)) Γ tF a t = record { TMap = tfmap a t ; isNTrans = record { commute = λ {a'} {b} {f} → let open ≈-Reasoning (B) in begin FMap Γ f o tfmap a t a' ≈⟨⟩ FMap Γ f o ( TMap ε (FObj Γ a') o FMap F (TMap t a')) ≈⟨ assoc ⟩ (FMap Γ f o TMap ε (FObj Γ a') ) o FMap F (TMap t a') ≈⟨ car (nat ε) ⟩ (TMap ε (FObj Γ b) o FMap (F ○ U) (FMap Γ f) ) o FMap F (TMap t a') ≈↑⟨ assoc ⟩ TMap ε (FObj Γ b) o ( FMap (F ○ U) (FMap Γ f) o FMap F (TMap t a') ) ≈↑⟨ cdr ( distr F ) ⟩ TMap ε (FObj Γ b) o ( FMap F (A [ FMap U (FMap Γ f) o TMap t a' ] ) ) ≈⟨ cdr ( fcong F (nat t) ) ⟩ TMap ε (FObj Γ b) o FMap F (A [ TMap t b o FMap (K I A a) f ]) ≈⟨⟩ TMap ε (FObj Γ b) o FMap F (A [ TMap t b o id1 A (FObj (K I A a) b) ]) ≈⟨ cdr ( fcong F (idR1 A)) ⟩ TMap ε (FObj Γ b) o FMap F (TMap t b ) ≈↑⟨ idR ⟩ ( TMap ε (FObj Γ b) o FMap F (TMap t b)) o id1 B (FObj F (FObj (K I A a) b)) ≈⟨⟩ tfmap a t b o FMap (K I B (FObj F a)) f ∎ } } limit1 : (a : Obj A) → NTrans I A (K I A a) (U ○ Γ) → Hom A a (FObj U (a0 limitb) ) limit1 a t = A [ FMap U (limit (isLimit limitb) (FObj F a) (tF a t )) o TMap η a ] t0f=t1 : {a : Obj A} {t : NTrans I A (K I A a) (U ○ Γ)} {i : Obj I} → A [ A [ TMap ta i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap ta i o limit1 a t ≈⟨⟩ FMap U ( TMap tb i ) o ( FMap U (limit (isLimit limitb) (FObj F a) (tF a t )) o TMap η a ) ≈⟨ assoc ⟩ ( FMap U ( TMap tb i ) o FMap U (limit (isLimit limitb) (FObj F a) (tF a t ))) o TMap η a ≈↑⟨ car ( distr U ) ⟩ FMap U ( B [ TMap tb i o limit (isLimit limitb) (FObj F a) (tF a t ) ] ) o TMap η a ≈⟨ car ( fcong U ( t0f=t (isLimit limitb) ) ) ⟩ FMap U (TMap (tF a t) i) o TMap η a ≈⟨⟩ FMap U ( B [ TMap ε (FObj Γ i) o FMap F (TMap t i) ] ) o TMap η a ≈⟨ car ( distr U ) ⟩ ( FMap U ( TMap ε (FObj Γ i)) o FMap U ( FMap F (TMap t i) )) o TMap η a ≈↑⟨ assoc ⟩ FMap U ( TMap ε (FObj Γ i) ) o ( FMap U ( FMap F (TMap t i) ) o TMap η a ) ≈⟨ cdr ( nat η ) ⟩ FMap U (TMap ε (FObj Γ i)) o ( TMap η (FObj U (FObj Γ i)) o FMap (identityFunctor {_} {_} {_} {A}) (TMap t i) ) ≈⟨ assoc ⟩ ( FMap U (TMap ε (FObj Γ i)) o TMap η (FObj U (FObj Γ i))) o TMap t i ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj ) ) ⟩ id1 A (FObj (U ○ Γ) i) o TMap t i ≈⟨ idL ⟩ TMap t i ∎ -- ta = TMap (Functor*Nat I A U tb) , FMap U ( TMap tb i ) o f ≈ TMap t i limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K I A a) (U ○ Γ)} {f : Hom A a (FObj U lim)} → ({i : Obj I} → A [ A [ TMap ta i o f ] ≈ TMap t i ]) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin limit1 a t ≈⟨⟩ FMap U (limit (isLimit limitb) (FObj F a) (tF a t )) o TMap η a ≈⟨ car ( fcong U (limit-uniqueness (isLimit limitb) ( λ {i} → lemma1 i) )) ⟩ FMap U ( B [ TMap ε lim o FMap F f ] ) o TMap η a -- Universal mapping ≈⟨ car (distr U ) ⟩ ( (FMap U (TMap ε lim)) o (FMap U ( FMap F f )) ) o TMap η a ≈⟨ sym assoc ⟩ (FMap U (TMap ε lim)) o ((FMap U ( FMap F f )) o TMap η a ) ≈⟨ cdr (nat η) ⟩ (FMap U (TMap ε lim)) o ((TMap η (FObj U lim )) o f ) ≈⟨ assoc ⟩ ((FMap U (TMap ε lim)) o (TMap η (FObj U lim))) o f ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj)) ⟩ id (FObj U lim) o f ≈⟨ idL ⟩ f ∎ where lemma1 : (i : Obj I) → B [ B [ TMap tb i o B [ TMap ε lim o FMap F f ] ] ≈ TMap (tF a t) i ] lemma1 i = let open ≈-Reasoning (B) in begin TMap tb i o (TMap ε lim o FMap F f) ≈⟨ assoc ⟩ ( TMap tb i o TMap ε lim ) o FMap F f ≈⟨ car ( nat ε ) ⟩ ( TMap ε (FObj Γ i) o FMap F ( FMap U ( TMap tb i ))) o FMap F f ≈↑⟨ assoc ⟩ TMap ε (FObj Γ i) o ( FMap F ( FMap U ( TMap tb i )) o FMap F f ) ≈↑⟨ cdr ( distr F ) ⟩ TMap ε (FObj Γ i) o FMap F ( A [ FMap U ( TMap tb i ) o f ] ) ≈⟨ cdr ( fcong F (lim=t {i}) ) ⟩ TMap ε (FObj Γ i) o FMap F (TMap t i) ≈⟨⟩ TMap (tF a t) i ∎