Mercurial > hg > Members > kono > Proof > category
view equalizer.agda @ 208:a1e5d2a3d3bd
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 17:13:14 +0900 |
parents | 22811f7a04e1 |
children | 4e138cc953f3 |
line wrap: on
line source
--- -- -- Equalizer -- -- e f -- c --------> a ----------> b -- ^ . ----------> -- | . g -- |k . -- | . h -- d -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> ---- open import Category -- https://github.com/konn/category-agda open import Level open import Category.Sets module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where open import HomReasoning open import cat-utility record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field equalizer : {c d : Obj A} (e : Hom A c a) (h : Hom A d a) → Hom A d c equalize : {c d : Obj A} (e : Hom A c a) (h : Hom A d a) → A [ A [ A [ f o e ] o equalizer e h ] ≈ A [ g o h ] ] uniqueness : {c d : Obj A} (e : Hom A c a) (h : Hom A d a) ( k : Hom A d c ) → A [ A [ A [ f o e ] o k ] ≈ A [ g o h ] ] → A [ equalizer e h ≈ k ] record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field α : {e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a γ : {c d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e δ : {e a b : Obj A} → (f : Hom A a b) → Hom A a e b1 : {e : Obj A} → A [ A [ f o α {e} f g ] ≈ A [ g o α {e} f g ] ] b2 : {c d : Obj A } → {h : Hom A d a } → A [ A [ α {c} f g o γ {c} f g h ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] b3 : {e : Obj A} → A [ A [ α {e} f f o δ {e} f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] b4 : {c d : Obj A } {k : Hom A c a} → A [ A [ γ f g ( A [ α f g o k ] ) o δ {c} (A [ f o A [ α f g o k ] ] ) ] ≈ k ] -- A [ α f g o β f g h ] ≈ h β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) → Equalizer A f g → EqEqualizer A f g lemma-equ1 A {a} {b} f g eqa = record { α = {!!} ; γ = {!!} ; δ = {!!} ; b1 = {!!} ; b2 = {!!} ; b3 = {!!} ; b4 = {!!} }