Mercurial > hg > Members > kono > Proof > category
view HomReasoning.agda @ 124:aaeb92b58647
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2013 08:50:22 +0900 |
parents | 8e665152c306 |
children | 5f331dfc000b |
line wrap: on
line source
module HomReasoning where -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> open import Category -- https://github.com/konn/category-agda open import Level open Functor -- F(f) -- F(a) ---→ F(b) -- | | -- |t(a) |t(b) G(f)t(a) = t(b)F(f) -- | | -- v v -- G(a) ---→ G(b) -- G(f) record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′) ( F G : Functor D C ) (TMap : (A : Obj D) → Hom C (FObj F A) (FObj G A)) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where field naturality : {a b : Obj D} {f : Hom D a b} → C [ C [ ( FMap G f ) o ( TMap a ) ] ≈ C [ (TMap b ) o (FMap F f) ] ] record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where field TMap : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A) isNTrans : IsNTrans domain codomain F G TMap module ≈-Reasoning {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where open import Relation.Binary.Core _o_ : {a b c : Obj A } ( x : Hom A a b ) ( y : Hom A c a ) → Hom A c b x o y = A [ x o y ] _≈_ : {a b : Obj A } → Rel (Hom A a b) ℓ x ≈ y = A [ x ≈ y ] infixr 9 _o_ infix 4 _≈_ refl-hom : {a b : Obj A } { x : Hom A a b } → x ≈ x refl-hom = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A )) trans-hom : {a b : Obj A } { x y z : Hom A a b } → x ≈ y → y ≈ z → x ≈ z trans-hom b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory A ))) b c -- some short cuts car : {a b c : Obj A } {x y : Hom A a b } { f : Hom A c a } → x ≈ y → ( x o f ) ≈ ( y o f ) car {f} eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) ( refl-hom ) eq cdr : {a b c : Obj A } {x y : Hom A a b } { f : Hom A b c } → x ≈ y → f o x ≈ f o y cdr {f} eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) eq (refl-hom ) id : (a : Obj A ) → Hom A a a id a = (Id {_} {_} {_} {A} a) idL : {a b : Obj A } { f : Hom A b a } → id a o f ≈ f idL = IsCategory.identityL (Category.isCategory A) idR : {a b : Obj A } { f : Hom A a b } → f o id a ≈ f idR = IsCategory.identityR (Category.isCategory A) sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) -- How to prove this? ≡-≈ : {a b : Obj A } { x y : Hom A a b } → (x≈y : x ≡ y ) → x ≈ y ≡-≈ refl = refl-hom -- ≈-≡ : {a b : Obj A } { x y : Hom A a b } → (x≈y : x ≈ y ) → x ≡ y -- ≈-≡ x≈y = irr x≈y ≡-cong : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } → a ≡ b → (f : Hom B x y → Hom A x' y' ) → f a ≈ f b ≡-cong refl f = ≡-≈ refl -- cong-≈ : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } → -- B [ a ≈ b ] → (f : Hom B x y → Hom A x' y' ) → f a ≈ f b -- cong-≈ eq f = {!!} assoc : {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b} → A [ A [ f o ( A [ g o h ] ) ] ≈ A [ ( A [ f o g ] ) o h ] ] assoc = IsCategory.associative (Category.isCategory A) -- slow but working on another cateogry assoc1 : { c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b} → A [ A [ f o ( A [ g o h ] ) ] ≈ A [ ( A [ f o g ] ) o h ] ] assoc1 {_} {_} {_} {A} = IsCategory.associative (Category.isCategory A) distr : { c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′} (T : Functor D A) → {a b c : Obj D} {g : Hom D b c} { f : Hom D a b } → A [ FMap T ( D [ g o f ] ) ≈ A [ FMap T g o FMap T f ] ] distr T = IsFunctor.distr ( isFunctor T ) resp : {a b c : Obj A} {f g : Hom A a b} {h i : Hom A b c} → f ≈ g → h ≈ i → (h o f) ≈ (i o g) resp = IsCategory.o-resp-≈ (Category.isCategory A) fcong : { c₁ c₂ ℓ : Level} {C : Category c₁ c₂ ℓ} { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′} {a b : Obj C} {f g : Hom C a b} → (T : Functor C D) → C [ f ≈ g ] → D [ FMap T f ≈ FMap T g ] fcong T = IsFunctor.≈-cong (isFunctor T) open NTrans nat : { c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′} {a b : Obj D} {f : Hom D a b} {F G : Functor D A } → (η : NTrans D A F G ) → A [ A [ FMap G f o TMap η a ] ≈ A [ TMap η b o FMap F f ] ] nat η = IsNTrans.naturality ( isNTrans η ) infixr 2 _∎ infixr 2 _≈⟨_⟩_ _≈⟨⟩_ infix 1 begin_ ------ If we have this, for example, as an axiom of a category, we can use ≡-Reasoning directly -- ≈-to-≡ : {a b : Obj A } { x y : Hom A a b } → A [ x ≈ y ] → x ≡ y -- ≈-to-≡ refl-hom = refl data _IsRelatedTo_ { a b : Obj A } ( x y : Hom A a b ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where relTo : (x≈y : x ≈ y ) → x IsRelatedTo y begin_ : { a b : Obj A } { x y : Hom A a b } → x IsRelatedTo y → x ≈ y begin relTo x≈y = x≈y _≈⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → x ≈ y → y IsRelatedTo z → x IsRelatedTo z _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z) _≈⟨⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y : Hom A a b } → x IsRelatedTo y → x IsRelatedTo y _ ≈⟨⟩ x∼y = x∼y _∎ : { a b : Obj A } ( x : Hom A a b ) → x IsRelatedTo x _∎ _ = relTo refl-hom -- an example Lemma61 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → { a : Obj A } ( b : Obj A ) → ( f : Hom A a b ) → A [ A [ (Id {_} {_} {_} {A} b) o f ] ≈ f ] Lemma61 c b g = -- IsCategory.identityL (Category.isCategory c) let open ≈-Reasoning (c) in begin c [ Id {_} {_} {_} {c} b o g ] ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ g ∎