Mercurial > hg > Members > kono > Proof > category
view nat.agda @ 124:aaeb92b58647
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2013 08:50:22 +0900 (2013-08-01) |
parents | e763efd30868 |
children | 5f331dfc000b |
line wrap: on
line source
-- -- -- -- -- -- -- -- -- Monad to Kelisli Category -- defines U_T and F_T as a resolution of Monad -- checks Adjointness -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> -- -- -- -- -- -- -- -- -- Monad -- Category A -- A = Category -- Functor T : A → A --T(a) = t(a) --T(f) = tf(f) open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat module nat { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { M : Monad A T η μ } { K : Kleisli A T η μ M } where --T(g f) = T(g) T(f) open Functor Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } → A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] Lemma1 = \t → IsFunctor.distr ( isFunctor t ) open NTrans Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A} → (μ : NTrans A A F G) → {a b : Obj A} { f : Hom A a b } → A [ A [ FMap G f o TMap μ a ] ≈ A [ TMap μ b o FMap F f ] ] Lemma2 = \n → IsNTrans.naturality ( isNTrans n ) -- Laws of Monad -- -- η : 1_A → T -- μ : TT → T -- μ(a)η(T(a)) = a -- unity law 1 -- μ(a)T(η(a)) = a -- unity law 2 -- μ(a)(μ(T(a))) = μ(a)T(μ(a)) -- association law open Monad Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] Lemma3 = \m → IsMonad.assoc ( isMonad m ) Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b} → A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] Lemma4 = \a → IsCategory.identityL ( Category.isCategory a ) Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma5 = \m → IsMonad.unity1 ( isMonad m ) Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ TMap μ a o (FMap T (TMap η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma6 = \m → IsMonad.unity2 ( isMonad m ) -- Laws of Kleisli Category -- -- nat of η -- g ○ f = μ(c) T(g) f -- join definition -- η(b) ○ f = f -- left id (Lemma7) -- f ○ η(a) = f -- right id (Lemma8) -- h ○ (g ○ f) = (h ○ g) ○ f -- assocation law (Lemma9) open Kleisli -- η(b) ○ f = f Lemma7 : { a : Obj A } { b : Obj A } ( f : Hom A a ( FObj T b) ) → A [ join K (TMap η b) f ≈ f ] Lemma7 {_} {b} f = let open ≈-Reasoning (A) in begin join K (TMap η b) f ≈⟨ refl-hom ⟩ A [ TMap μ b o A [ FMap T ((TMap η b)) o f ] ] ≈⟨ IsCategory.associative (Category.isCategory A) ⟩ A [ A [ TMap μ b o FMap T ((TMap η b)) ] o f ] ≈⟨ car ( IsMonad.unity2 ( isMonad ( monad K )) ) ⟩ A [ id (FObj T b) o f ] ≈⟨ IsCategory.identityL (Category.isCategory A) ⟩ f ∎ -- f ○ η(a) = f Lemma8 : { a : Obj A } { b : Obj A } ( f : Hom A a ( FObj T b) ) → A [ join K f (TMap η a) ≈ f ] Lemma8 {a} {b} f = begin join K f (TMap η a) ≈⟨ refl-hom ⟩ A [ TMap μ b o A [ FMap T f o (TMap η a) ] ] ≈⟨ cdr ( nat η ) ⟩ A [ TMap μ b o A [ (TMap η ( FObj T b)) o f ] ] ≈⟨ IsCategory.associative (Category.isCategory A) ⟩ A [ A [ TMap μ b o (TMap η ( FObj T b)) ] o f ] ≈⟨ car ( IsMonad.unity1 ( isMonad ( monad K )) ) ⟩ A [ id (FObj T b) o f ] ≈⟨ IsCategory.identityL (Category.isCategory A) ⟩ f ∎ where open ≈-Reasoning (A) -- h ○ (g ○ f) = (h ○ g) ○ f Lemma9 : { a b c d : Obj A } ( h : Hom A c ( FObj T d) ) ( g : Hom A b ( FObj T c) ) ( f : Hom A a ( FObj T b) ) → A [ join K h (join K g f) ≈ join K ( join K h g) f ] Lemma9 {a} {b} {c} {d} h g f = begin join K h (join K g f) ≈⟨⟩ join K h ( ( TMap μ c o ( FMap T g o f ) ) ) ≈⟨ refl-hom ⟩ ( TMap μ d o ( FMap T h o ( TMap μ c o ( FMap T g o f ) ) ) ) ≈⟨ cdr ( cdr ( assoc )) ⟩ ( TMap μ d o ( FMap T h o ( ( TMap μ c o FMap T g ) o f ) ) ) ≈⟨ assoc ⟩ --- ( f o ( g o h ) ) = ( ( f o g ) o h ) ( ( TMap μ d o FMap T h ) o ( (TMap μ c o FMap T g ) o f ) ) ≈⟨ assoc ⟩ ( ( ( TMap μ d o FMap T h ) o (TMap μ c o FMap T g ) ) o f ) ≈⟨ car (sym assoc) ⟩ ( ( TMap μ d o ( FMap T h o ( TMap μ c o FMap T g ) ) ) o f ) ≈⟨ car ( cdr (assoc) ) ⟩ ( ( TMap μ d o ( ( FMap T h o TMap μ c ) o FMap T g ) ) o f ) ≈⟨ car assoc ⟩ ( ( ( TMap μ d o ( FMap T h o TMap μ c ) ) o FMap T g ) o f ) ≈⟨ car (car ( cdr ( begin ( FMap T h o TMap μ c ) ≈⟨ nat μ ⟩ ( TMap μ (FObj T d) o FMap T (FMap T h) ) ∎ ))) ⟩ ( ( ( TMap μ d o ( TMap μ ( FObj T d) o FMap T ( FMap T h ) ) ) o FMap T g ) o f ) ≈⟨ car (sym assoc) ⟩ ( ( TMap μ d o ( ( TMap μ ( FObj T d) o FMap T ( FMap T h ) ) o FMap T g ) ) o f ) ≈⟨ car ( cdr (sym assoc) ) ⟩ ( ( TMap μ d o ( TMap μ ( FObj T d) o ( FMap T ( FMap T h ) o FMap T g ) ) ) o f ) ≈⟨ car ( cdr (cdr (sym (distr T )))) ⟩ ( ( TMap μ d o ( TMap μ ( FObj T d) o FMap T ( ( FMap T h o g ) ) ) ) o f ) ≈⟨ car assoc ⟩ ( ( ( TMap μ d o TMap μ ( FObj T d) ) o FMap T ( ( FMap T h o g ) ) ) o f ) ≈⟨ car ( car ( begin ( TMap μ d o TMap μ (FObj T d) ) ≈⟨ IsMonad.assoc ( isMonad M) ⟩ ( TMap μ d o FMap T (TMap μ d) ) ∎ )) ⟩ ( ( ( TMap μ d o FMap T ( TMap μ d) ) o FMap T ( ( FMap T h o g ) ) ) o f ) ≈⟨ car (sym assoc) ⟩ ( ( TMap μ d o ( FMap T ( TMap μ d ) o FMap T ( ( FMap T h o g ) ) ) ) o f ) ≈⟨ sym assoc ⟩ ( TMap μ d o ( ( FMap T ( TMap μ d ) o FMap T ( ( FMap T h o g ) ) ) o f ) ) ≈⟨ cdr ( car ( sym ( distr T ))) ⟩ ( TMap μ d o ( FMap T ( ( ( TMap μ d ) o ( FMap T h o g ) ) ) o f ) ) ≈⟨ refl-hom ⟩ join K ( ( TMap μ d o ( FMap T h o g ) ) ) f ≈⟨ refl-hom ⟩ join K ( join K h g) f ∎ where open ≈-Reasoning (A) -- -- o-resp in Kleisli Category ( for Functor definitions ) -- Lemma10 : {a b c : Obj A} -> (f g : Hom A a (FObj T b) ) → (h i : Hom A b (FObj T c) ) → A [ f ≈ g ] → A [ h ≈ i ] → A [ (join K h f) ≈ (join K i g) ] Lemma10 {a} {b} {c} f g h i eq-fg eq-hi = let open ≈-Reasoning (A) in begin join K h f ≈⟨⟩ TMap μ c o ( FMap T h o f ) ≈⟨ cdr ( IsCategory.o-resp-≈ (Category.isCategory A) eq-fg ((IsFunctor.≈-cong (isFunctor T)) eq-hi )) ⟩ TMap μ c o ( FMap T i o g ) ≈⟨⟩ join K i g ∎ -- -- Hom in Kleisli Category -- record KleisliHom { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } (a : Obj A) (b : Obj A) : Set c₂ where field KMap : Hom A a ( FObj T b ) open KleisliHom KHom = \(a b : Obj A) -> KleisliHom {c₁} {c₂} {ℓ} {A} {T} a b K-id : {a : Obj A} → KHom a a K-id {a = a} = record { KMap = TMap η a } open import Relation.Binary.Core _⋍_ : { a : Obj A } { b : Obj A } (f g : KHom a b ) -> Set ℓ _⋍_ {a} {b} f g = A [ KMap f ≈ KMap g ] _*_ : { a b c : Obj A } → ( KHom b c) → ( KHom a b) → KHom a c _*_ {a} {b} {c} g f = record { KMap = join K {a} {b} {c} (KMap g) (KMap f) } isKleisliCategory : IsCategory ( Obj A ) KHom _⋍_ _*_ K-id isKleisliCategory = record { isEquivalence = isEquivalence ; identityL = KidL ; identityR = KidR ; o-resp-≈ = Ko-resp ; associative = Kassoc } where open ≈-Reasoning (A) isEquivalence : { a b : Obj A } -> IsEquivalence {_} {_} {KHom a b} _⋍_ isEquivalence {C} {D} = -- this is the same function as A's equivalence but has different types record { refl = refl-hom ; sym = sym ; trans = trans-hom } KidL : {C D : Obj A} -> {f : KHom C D} → (K-id * f) ⋍ f KidL {_} {_} {f} = Lemma7 (KMap f) KidR : {C D : Obj A} -> {f : KHom C D} → (f * K-id) ⋍ f KidR {_} {_} {f} = Lemma8 (KMap f) Ko-resp : {a b c : Obj A} -> {f g : KHom a b } → {h i : KHom b c } → f ⋍ g → h ⋍ i → (h * f) ⋍ (i * g) Ko-resp {a} {b} {c} {f} {g} {h} {i} eq-fg eq-hi = Lemma10 {a} {b} {c} (KMap f) (KMap g) (KMap h) (KMap i) eq-fg eq-hi Kassoc : {a b c d : Obj A} -> {f : KHom c d } → {g : KHom b c } → {h : KHom a b } → (f * (g * h)) ⋍ ((f * g) * h) Kassoc {_} {_} {_} {_} {f} {g} {h} = Lemma9 (KMap f) (KMap g) (KMap h) KleisliCategory : Category c₁ c₂ ℓ KleisliCategory = record { Obj = Obj A ; Hom = KHom ; _o_ = _*_ ; _≈_ = _⋍_ ; Id = K-id ; isCategory = isKleisliCategory } -- -- Resolution -- T = U_T U_F -- nat-ε -- nat-η -- ufmap : {a b : Obj A} (f : KHom a b ) -> Hom A (FObj T a) (FObj T b) ufmap {a} {b} f = A [ TMap μ (b) o FMap T (KMap f) ] U_T : Functor KleisliCategory A U_T = record { FObj = FObj T ; FMap = ufmap ; isFunctor = record { ≈-cong = ≈-cong ; identity = identity ; distr = distr1 } } where identity : {a : Obj A} → A [ ufmap (K-id {a}) ≈ id1 A (FObj T a) ] identity {a} = let open ≈-Reasoning (A) in begin TMap μ (a) o FMap T (TMap η a) ≈⟨ IsMonad.unity2 (isMonad M) ⟩ id1 A (FObj T a) ∎ ≈-cong : {a b : Obj A} {f g : KHom a b} → A [ KMap f ≈ KMap g ] → A [ ufmap f ≈ ufmap g ] ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in begin TMap μ (b) o FMap T (KMap f) ≈⟨ cdr (fcong T f≈g) ⟩ TMap μ (b) o FMap T (KMap g) ∎ distr1 : {a b c : Obj A} {f : KHom a b} {g : KHom b c} → A [ ufmap (g * f) ≈ (A [ ufmap g o ufmap f ] )] distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in begin ufmap (g * f) ≈⟨⟩ ufmap {a} {c} ( record { KMap = TMap μ (c) o (FMap T (KMap g) o (KMap f)) } ) ≈⟨⟩ TMap μ (c) o FMap T ( TMap μ (c) o (FMap T (KMap g) o (KMap f))) ≈⟨ cdr ( distr T) ⟩ TMap μ (c) o (( FMap T ( TMap μ (c)) o FMap T (FMap T (KMap g) o (KMap f)))) ≈⟨ assoc ⟩ (TMap μ (c) o ( FMap T ( TMap μ (c)))) o FMap T (FMap T (KMap g) o (KMap f)) ≈⟨ car (sym (IsMonad.assoc (isMonad M))) ⟩ (TMap μ (c) o ( TMap μ (FObj T c))) o FMap T (FMap T (KMap g) o (KMap f)) ≈⟨ sym assoc ⟩ TMap μ (c) o (( TMap μ (FObj T c)) o FMap T (FMap T (KMap g) o (KMap f))) ≈⟨ cdr (cdr (distr T)) ⟩ TMap μ (c) o (( TMap μ (FObj T c)) o (FMap T (FMap T (KMap g)) o FMap T (KMap f))) ≈⟨ cdr (assoc) ⟩ TMap μ (c) o ((( TMap μ (FObj T c)) o (FMap T (FMap T (KMap g)))) o FMap T (KMap f)) ≈⟨ sym (cdr (car (nat μ ))) ⟩ TMap μ (c) o ((FMap T (KMap g ) o TMap μ (b)) o FMap T (KMap f )) ≈⟨ cdr (sym assoc) ⟩ TMap μ (c) o (FMap T (KMap g ) o ( TMap μ (b) o FMap T (KMap f ))) ≈⟨ assoc ⟩ ( TMap μ (c) o FMap T (KMap g ) ) o ( TMap μ (b) o FMap T (KMap f ) ) ≈⟨⟩ ufmap g o ufmap f ∎ ffmap : {a b : Obj A} (f : Hom A a b) -> KHom a b ffmap f = record { KMap = A [ TMap η (Category.cod A f) o f ] } F_T : Functor A KleisliCategory F_T = record { FObj = \a -> a ; FMap = ffmap ; isFunctor = record { ≈-cong = ≈-cong ; identity = identity ; distr = distr1 } } where identity : {a : Obj A} → A [ A [ TMap η a o id1 A a ] ≈ TMap η a ] identity {a} = IsCategory.identityR ( Category.isCategory A) -- Category.cod A f and Category.cod A g are actualy the same b, so we don't need cong-≈, just refl lemma1 : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → A [ TMap η b ≈ TMap η b ] lemma1 f≈g = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A )) ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → A [ A [ TMap η (Category.cod A f) o f ] ≈ A [ TMap η (Category.cod A g) o g ] ] ≈-cong f≈g = (IsCategory.o-resp-≈ (Category.isCategory A)) f≈g ( lemma1 f≈g ) distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → ( ffmap (A [ g o f ]) ⋍ ( ffmap g * ffmap f ) ) distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in begin KMap (ffmap (A [ g o f ])) ≈⟨⟩ TMap η (c) o (g o f) ≈⟨ assoc ⟩ (TMap η (c) o g) o f ≈⟨ car (sym (nat η)) ⟩ (FMap T g o TMap η (b)) o f ≈⟨ sym idL ⟩ id1 A (FObj T c) o ((FMap T g o TMap η (b)) o f) ≈⟨ sym (car (IsMonad.unity2 (isMonad M))) ⟩ (TMap μ c o FMap T (TMap η c)) o ((FMap T g o TMap η (b)) o f) ≈⟨ sym assoc ⟩ TMap μ c o ( FMap T (TMap η c) o ((FMap T g o TMap η (b)) o f) ) ≈⟨ cdr (cdr (sym assoc)) ⟩ TMap μ c o ( FMap T (TMap η c) o (FMap T g o (TMap η (b) o f))) ≈⟨ cdr assoc ⟩ TMap μ c o ( ( FMap T (TMap η c) o FMap T g ) o (TMap η (b) o f) ) ≈⟨ sym (cdr ( car ( distr T ))) ⟩ TMap μ c o ( ( FMap T (TMap η c o g)) o (TMap η (b) o f)) ≈⟨ assoc ⟩ (TMap μ c o ( FMap T (TMap η c o g))) o (TMap η (b) o f) ≈⟨ assoc ⟩ ((TMap μ c o (FMap T (TMap η c o g))) o TMap η b) o f ≈⟨ sym assoc ⟩ (TMap μ c o (FMap T (TMap η c o g))) o (TMap η b o f) ≈⟨ sym assoc ⟩ TMap μ c o ( (FMap T (TMap η c o g)) o (TMap η b o f) ) ≈⟨⟩ join K (TMap η c o g) (TMap η b o f) ≈⟨⟩ KMap ( ffmap g * ffmap f ) ∎ -- -- T = (U_T ○ F_T) -- Lemma11-1 : ∀{a b : Obj A} -> (f : Hom A a b ) -> A [ FMap T f ≈ FMap (U_T ○ F_T) f ] Lemma11-1 {a} {b} f = let open ≈-Reasoning (A) in sym ( begin FMap (U_T ○ F_T) f ≈⟨⟩ FMap U_T ( FMap F_T f ) ≈⟨⟩ TMap μ (b) o FMap T (KMap ( ffmap f ) ) ≈⟨⟩ TMap μ (b) o FMap T (TMap η (b) o f) ≈⟨ cdr (distr T ) ⟩ TMap μ (b) o ( FMap T (TMap η (b)) o FMap T f) ≈⟨ assoc ⟩ (TMap μ (b) o FMap T (TMap η (b))) o FMap T f ≈⟨ car (IsMonad.unity2 (isMonad M)) ⟩ id1 A (FObj T b) o FMap T f ≈⟨ idL ⟩ FMap T f ∎ ) -- construct ≃ Lemma11 : T ≃ (U_T ○ F_T) Lemma11 f = Category.Cat.refl (Lemma11-1 f) -- -- natural transformations -- nat-η : NTrans A A identityFunctor ( U_T ○ F_T ) nat-η = record { TMap = \x -> TMap η x ; isNTrans = isNTrans1 } where naturality1 : {a b : Obj A} {f : Hom A a b} → A [ A [ ( FMap ( U_T ○ F_T ) f ) o ( TMap η a ) ] ≈ A [ (TMap η b ) o f ] ] naturality1 {a} {b} {f} = let open ≈-Reasoning (A) in begin ( FMap ( U_T ○ F_T ) f ) o ( TMap η a ) ≈⟨ sym (resp refl-hom (Lemma11-1 f)) ⟩ FMap T f o TMap η a ≈⟨ nat η ⟩ TMap η b o f ∎ isNTrans1 : IsNTrans A A identityFunctor ( U_T ○ F_T ) (\a -> TMap η a) isNTrans1 = record { naturality = naturality1 } tmap-ε : (a : Obj A) -> KHom (FObj T a) a tmap-ε a = record { KMap = id1 A (FObj T a) } nat-ε : NTrans KleisliCategory KleisliCategory ( F_T ○ U_T ) identityFunctor nat-ε = record { TMap = \a -> tmap-ε a; isNTrans = isNTrans1 } where naturality1 : {a b : Obj A} {f : KHom a b} → (f * ( tmap-ε a ) ) ⋍ (( tmap-ε b ) * ( FMap (F_T ○ U_T) f ) ) naturality1 {a} {b} {f} = let open ≈-Reasoning (A) in sym ( begin KMap (( tmap-ε b ) * ( FMap (F_T ○ U_T) f )) ≈⟨⟩ TMap μ b o ( FMap T ( id1 A (FObj T b) ) o ( KMap (FMap (F_T ○ U_T) f ) )) ≈⟨ cdr ( cdr ( begin KMap (FMap (F_T ○ U_T) f ) ≈⟨⟩ KMap (FMap F_T (FMap U_T f)) ≈⟨⟩ TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f)) ∎ )) ⟩ TMap μ b o ( FMap T ( id1 A (FObj T b) ) o (TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f)))) ≈⟨ cdr (car (IsFunctor.identity (isFunctor T))) ⟩ TMap μ b o ( id1 A (FObj T (FObj T b) ) o (TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f)))) ≈⟨ cdr idL ⟩ TMap μ b o (TMap η (FObj T b) o (TMap μ (b) o FMap T (KMap f))) ≈⟨ assoc ⟩ (TMap μ b o (TMap η (FObj T b))) o (TMap μ (b) o FMap T (KMap f)) ≈⟨ (car (IsMonad.unity1 (isMonad M))) ⟩ id1 A (FObj T b) o (TMap μ (b) o FMap T (KMap f)) ≈⟨ idL ⟩ TMap μ b o FMap T (KMap f) ≈⟨ cdr (sym idR) ⟩ TMap μ b o ( FMap T (KMap f) o id1 A (FObj T a) ) ≈⟨⟩ KMap (f * ( tmap-ε a )) ∎ ) isNTrans1 : IsNTrans KleisliCategory KleisliCategory ( F_T ○ U_T ) identityFunctor (\a -> tmap-ε a ) isNTrans1 = record { naturality = naturality1 } -- -- μ = U_T ε U_F -- tmap-μ : (a : Obj A) -> Hom A (FObj ( U_T ○ F_T ) (FObj ( U_T ○ F_T ) a)) (FObj ( U_T ○ F_T ) a) tmap-μ a = FMap U_T ( TMap nat-ε ( FObj F_T a )) nat-μ : NTrans A A (( U_T ○ F_T ) ○ ( U_T ○ F_T )) ( U_T ○ F_T ) nat-μ = record { TMap = tmap-μ ; isNTrans = isNTrans1 } where naturality1 : {a b : Obj A} {f : Hom A a b} → A [ A [ (FMap (U_T ○ F_T) f) o ( tmap-μ a) ] ≈ A [ ( tmap-μ b ) o FMap (U_T ○ F_T) ( FMap (U_T ○ F_T) f) ] ] naturality1 {a} {b} {f} = let open ≈-Reasoning (A) in sym ( begin ( tmap-μ b ) o FMap (U_T ○ F_T) ( FMap (U_T ○ F_T) f) ≈⟨⟩ ( FMap U_T ( TMap nat-ε ( FObj F_T b )) ) o FMap (U_T ○ F_T) ( FMap (U_T ○ F_T) f) ≈⟨ sym ( distr U_T) ⟩ FMap U_T ( KleisliCategory [ TMap nat-ε ( FObj F_T b ) o FMap F_T ( FMap (U_T ○ F_T) f) ] ) ≈⟨ fcong U_T (sym (nat nat-ε)) ⟩ FMap U_T ( KleisliCategory [ (FMap F_T f) o TMap nat-ε ( FObj F_T a ) ] ) ≈⟨ distr U_T ⟩ (FMap U_T (FMap F_T f)) o FMap U_T ( TMap nat-ε ( FObj F_T a )) ≈⟨⟩ (FMap (U_T ○ F_T) f) o ( tmap-μ a) ∎ ) isNTrans1 : IsNTrans A A (( U_T ○ F_T ) ○ ( U_T ○ F_T )) ( U_T ○ F_T ) tmap-μ isNTrans1 = record { naturality = naturality1 } Lemma12 : {x : Obj A } -> A [ TMap nat-μ x ≈ FMap U_T ( TMap nat-ε ( FObj F_T x ) ) ] Lemma12 {x} = let open ≈-Reasoning (A) in sym ( begin FMap U_T ( TMap nat-ε ( FObj F_T x ) ) ≈⟨⟩ tmap-μ x ≈⟨⟩ TMap nat-μ x ∎ ) Lemma13 : {x : Obj A } -> A [ TMap μ x ≈ FMap U_T ( TMap nat-ε ( FObj F_T x ) ) ] Lemma13 {x} = let open ≈-Reasoning (A) in sym ( begin FMap U_T ( TMap nat-ε ( FObj F_T x ) ) ≈⟨⟩ TMap μ x o FMap T (id1 A (FObj T x) ) ≈⟨ cdr (IsFunctor.identity (isFunctor T)) ⟩ TMap μ x o id1 A (FObj T (FObj T x) ) ≈⟨ idR ⟩ TMap μ x ∎ ) Adj_T : Adjunction A KleisliCategory U_T F_T nat-η nat-ε Adj_T = record { isAdjunction = record { adjoint1 = adjoint1 ; adjoint2 = adjoint2 } } where adjoint1 : { b : Obj KleisliCategory } → A [ A [ ( FMap U_T ( TMap nat-ε b)) o ( TMap nat-η ( FObj U_T b )) ] ≈ id1 A (FObj U_T b) ] adjoint1 {b} = let open ≈-Reasoning (A) in begin ( FMap U_T ( TMap nat-ε b)) o ( TMap nat-η ( FObj U_T b )) ≈⟨⟩ (TMap μ (b) o FMap T (id1 A (FObj T b ))) o ( TMap η ( FObj T b )) ≈⟨ car ( cdr (IsFunctor.identity (isFunctor T))) ⟩ (TMap μ (b) o (id1 A (FObj T (FObj T b )))) o ( TMap η ( FObj T b )) ≈⟨ car idR ⟩ TMap μ (b) o ( TMap η ( FObj T b )) ≈⟨ IsMonad.unity1 (isMonad M) ⟩ id1 A (FObj U_T b) ∎ adjoint2 : {a : Obj A} → KleisliCategory [ KleisliCategory [ ( TMap nat-ε ( FObj F_T a )) o ( FMap F_T ( TMap nat-η a )) ] ≈ id1 KleisliCategory (FObj F_T a) ] adjoint2 {a} = let open ≈-Reasoning (A) in begin KMap (( TMap nat-ε ( FObj F_T a )) * ( FMap F_T ( TMap nat-η a )) ) ≈⟨⟩ TMap μ a o (FMap T (id1 A (FObj T a) ) o ((TMap η (FObj T a)) o (TMap η a))) ≈⟨ cdr ( car ( IsFunctor.identity (isFunctor T))) ⟩ TMap μ a o ((id1 A (FObj T (FObj T a) )) o ((TMap η (FObj T a)) o (TMap η a))) ≈⟨ cdr ( idL ) ⟩ TMap μ a o ((TMap η (FObj T a)) o (TMap η a)) ≈⟨ assoc ⟩ (TMap μ a o (TMap η (FObj T a))) o (TMap η a) ≈⟨ car (IsMonad.unity1 (isMonad M)) ⟩ id1 A (FObj T a) o (TMap η a) ≈⟨ idL ⟩ TMap η a ≈⟨⟩ TMap η (FObj F_T a) ≈⟨⟩ KMap (id1 KleisliCategory (FObj F_T a)) ∎ open MResolution Resolution_T : MResolution A KleisliCategory T U_T F_T {nat-η} {nat-ε} {nat-μ} Adj_T Resolution_T = record { T=UF = Lemma11; μ=UεF = Lemma12 } -- end