Mercurial > hg > Members > kono > Proof > category
view em-category.agda @ 834:b25fcdf3a84a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 26 Mar 2020 09:30:45 +0900 |
parents | a5f2ca67e7c5 |
children |
line wrap: on
line source
-- -- -- -- -- -- -- -- -- Monad to Eilenberg-Moore Category -- defines U^T and F^T as a resolution of Monad -- checks Adjointness -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> -- -- -- -- -- -- -- -- -- Monad -- Category A -- A = Category -- Functor T : A → A --T(a) = t(a) --T(f) = tf(f) open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat module em-category { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { M : IsMonad A T η μ } where -- -- Hom in Eilenberg-Moore Category -- open Functor open NTrans record IsAlgebra {a : Obj A} { phi : Hom A (FObj T a) a } : Set (c₁ ⊔ c₂ ⊔ ℓ) where field identity : A [ A [ phi o TMap η a ] ≈ id1 A a ] eval : A [ A [ phi o TMap μ a ] ≈ A [ phi o FMap T phi ] ] record EMObj : Set (c₁ ⊔ c₂ ⊔ ℓ) where field obj : Obj A φ : Hom A (FObj T obj) obj isAlgebra : IsAlgebra {obj} {φ} open EMObj record EMHom (a : EMObj ) (b : EMObj ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field EMap : Hom A (obj a) (obj b) homomorphism : A [ A [ (φ b) o FMap T EMap ] ≈ A [ EMap o (φ a) ] ] open EMHom Lemma-EM1 : {x : Obj A} {φ : Hom A (FObj T x) x} (a : EMObj ) → A [ A [ φ o FMap T (id1 A x) ] ≈ A [ (id1 A x) o φ ] ] Lemma-EM1 {x} {φ} a = let open ≈-Reasoning (A) in begin φ o FMap T (id1 A x) ≈⟨ cdr ( IsFunctor.identity (isFunctor T) ) ⟩ φ o (id1 A (FObj T x)) ≈⟨ idR ⟩ φ ≈⟨ sym idL ⟩ (id1 A x) o φ ∎ EM-id : { a : EMObj } → EMHom a a EM-id {a} = record { EMap = id1 A (obj a); homomorphism = Lemma-EM1 {obj a} {φ a} a } open import Relation.Binary.Core Lemma-EM2 : (a : EMObj ) (b : EMObj ) (c : EMObj ) (g : EMHom b c) (f : EMHom a b) → A [ A [ φ c o FMap T (A [ (EMap g) o (EMap f) ] ) ] ≈ A [ (A [ (EMap g) o (EMap f) ]) o φ a ] ] Lemma-EM2 a b c g f = let open ≈-Reasoning (A) in begin φ c o FMap T ((EMap g) o (EMap f)) ≈⟨ cdr (distr T) ⟩ φ c o ( FMap T (EMap g) o FMap T (EMap f) ) ≈⟨ assoc ⟩ ( φ c o FMap T (EMap g)) o FMap T (EMap f) ≈⟨ car (homomorphism (g)) ⟩ ( EMap g o φ b) o FMap T (EMap f) ≈⟨ sym assoc ⟩ EMap g o (φ b o FMap T (EMap f) ) ≈⟨ cdr (homomorphism (f)) ⟩ EMap g o (EMap f o φ a) ≈⟨ assoc ⟩ ( (EMap g) o (EMap f) ) o φ a ∎ _∙_ : {a b c : EMObj } → EMHom b c → EMHom a b → EMHom a c _∙_ {a} {b} {c} g f = record { EMap = A [ EMap g o EMap f ] ; homomorphism = Lemma-EM2 a b c g f } _≗_ : {a : EMObj } {b : EMObj } (f g : EMHom a b ) → Set ℓ _≗_ f g = A [ EMap f ≈ EMap g ] -- -- cannot use as identityL = EMidL -- EMidL : {C D : EMObj} → {f : EMHom C D} → (EM-id ∙ f) ≗ f EMidL {C} {D} {f} = let open ≈-Reasoning (A) in idL {obj C} EMidR : {C D : EMObj} → {f : EMHom C D} → (f ∙ EM-id) ≗ f EMidR {C} {_} {_} = let open ≈-Reasoning (A) in idR {obj C} EMo-resp : {a b c : EMObj} → {f g : EMHom a b } → {h i : EMHom b c } → f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) EMo-resp {a} {b} {c} {f} {g} {h} {i} = ( IsCategory.o-resp-≈ (Category.isCategory A) ) EMassoc : {a b c d : EMObj} → {f : EMHom c d } → {g : EMHom b c } → {h : EMHom a b } → (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) EMassoc {_} {_} {_} {_} {f} {g} {h} = ( IsCategory.associative (Category.isCategory A) ) isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id isEilenberg-MooreCategory = record { isEquivalence = isEquivalence ; identityL = IsCategory.identityL (Category.isCategory A) ; identityR = IsCategory.identityR (Category.isCategory A) ; o-resp-≈ = IsCategory.o-resp-≈ (Category.isCategory A) ; associative = IsCategory.associative (Category.isCategory A) } where open ≈-Reasoning (A) isEquivalence : {a : EMObj } {b : EMObj } → IsEquivalence {_} {_} {EMHom a b } _≗_ isEquivalence {C} {D} = -- this is the same function as A's equivalence but has different types record { refl = refl-hom ; sym = sym ; trans = trans-hom } Eilenberg-MooreCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ Eilenberg-MooreCategory = record { Obj = EMObj ; Hom = EMHom ; _o_ = _∙_ ; _≈_ = _≗_ ; Id = EM-id ; isCategory = isEilenberg-MooreCategory } -- Resolution -- T = U^T U^F -- ε^t -- η^T U^T : Functor Eilenberg-MooreCategory A U^T = record { FObj = λ a → obj a ; FMap = λ f → EMap f ; isFunctor = record { ≈-cong = λ eq → eq ; identity = refl-hom ; distr = refl-hom } } where open ≈-Reasoning (A) Lemma-EM4 : (x : Obj A ) → A [ A [ TMap μ x o TMap η (FObj T x) ] ≈ id1 A (FObj T x) ] Lemma-EM4 x = let open ≈-Reasoning (A) in begin TMap μ x o TMap η (FObj T x) ≈⟨ IsMonad.unity1 M ⟩ id1 A (FObj T x) ∎ Lemma-EM5 : (x : Obj A ) → A [ A [ ( TMap μ x) o TMap μ (FObj T x) ] ≈ A [ ( TMap μ x) o FMap T ( TMap μ x) ] ] Lemma-EM5 x = let open ≈-Reasoning (A) in begin ( TMap μ x) o TMap μ (FObj T x) ≈⟨ IsMonad.assoc M ⟩ ( TMap μ x) o FMap T ( TMap μ x) ∎ ftobj : Obj A → EMObj ftobj = λ x → record { obj = FObj T x ; φ = TMap μ x; isAlgebra = record { identity = Lemma-EM4 x; eval = Lemma-EM5 x } } Lemma-EM6 : (a b : Obj A ) → (f : Hom A a b ) → A [ A [ (φ (ftobj b)) o FMap T (FMap T f) ] ≈ A [ FMap T f o (φ (ftobj a)) ] ] Lemma-EM6 a b f = let open ≈-Reasoning (A) in begin (φ (ftobj b)) o FMap T (FMap T f) ≈⟨⟩ TMap μ b o FMap T (FMap T f) ≈⟨ sym (nat μ) ⟩ FMap T f o TMap μ a ≈⟨⟩ FMap T f o (φ (ftobj a)) ∎ ftmap : {a b : Obj A} → (Hom A a b) → EMHom (ftobj a) (ftobj b) ftmap {a} {b} f = record { EMap = FMap T f; homomorphism = Lemma-EM6 a b f } F^T : Functor A Eilenberg-MooreCategory F^T = record { FObj = ftobj ; FMap = ftmap ; isFunctor = record { ≈-cong = ≈-cong ; identity = identity ; distr = distr1 } } where ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → (ftmap f) ≗ (ftmap g) ≈-cong = let open ≈-Reasoning (A) in ( fcong T ) identity : {a : Obj A} → ftmap (id1 A a) ≗ EM-id {ftobj a} identity = IsFunctor.identity ( isFunctor T ) distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → ftmap (A [ g o f ]) ≗ ( ftmap g ∙ ftmap f ) distr1 = let open ≈-Reasoning (A) in ( distr T ) -- T = (U^T ○ F^T) Lemma-EM7 : ∀{a b : Obj A} → (f : Hom A a b ) → A [ FMap T f ≈ FMap (U^T ○ F^T) f ] Lemma-EM7 {a} {b} f = let open ≈-Reasoning (A) in sym ( begin FMap (U^T ○ F^T) f ≈⟨⟩ EMap ( ftmap f ) ≈⟨⟩ FMap T f ∎ ) Lemma-EM8 : T ≃ (U^T ○ F^T) Lemma-EM8 f = Category.Cat.refl (Lemma-EM7 f) η^T : NTrans A A identityFunctor ( U^T ○ F^T ) η^T = record { TMap = λ x → TMap η x ; isNTrans = record { commute = λ {a} {b} {f} → commute {a} {b} {f} }} where commute : {a b : Obj A} {f : Hom A a b} → A [ A [ ( FMap ( U^T ○ F^T ) f ) o ( TMap η a ) ] ≈ A [ (TMap η b ) o f ] ] commute {a} {b} {f} = let open ≈-Reasoning (A) in begin ( FMap ( U^T ○ F^T ) f ) o ( TMap η a ) ≈⟨ sym (resp refl-hom (Lemma-EM7 f)) ⟩ FMap T f o TMap η a ≈⟨ nat η ⟩ TMap η b o f ∎ Lemma-EM9 : (a : EMObj) → A [ A [ (φ a) o FMap T (φ a) ] ≈ A [ (φ a) o (φ (FObj ( F^T ○ U^T ) a)) ] ] Lemma-EM9 a = let open ≈-Reasoning (A) in sym ( begin (φ a) o (φ (FObj ( F^T ○ U^T ) a)) ≈⟨⟩ (φ a) o (TMap μ (obj a)) ≈⟨ IsAlgebra.eval (isAlgebra a) ⟩ (φ a) o FMap T (φ a) ∎ ) emap-ε : (a : EMObj ) → EMHom (FObj ( F^T ○ U^T ) a) a emap-ε a = record { EMap = φ a ; homomorphism = Lemma-EM9 a } ε^T : NTrans Eilenberg-MooreCategory Eilenberg-MooreCategory ( F^T ○ U^T ) identityFunctor ε^T = record { TMap = λ a → emap-ε a; isNTrans = record { commute = λ {a} {b} {f} → commute {a} {b} {f} }} where commute : {a b : EMObj } {f : EMHom a b} → (f ∙ ( emap-ε a ) ) ≗ (( emap-ε b ) ∙( FMap (F^T ○ U^T) f ) ) commute {a} {b} {f} = let open ≈-Reasoning (A) in sym ( begin EMap (( emap-ε b ) ∙ ( FMap (F^T ○ U^T) f )) ≈⟨⟩ φ b o FMap T (EMap f) ≈⟨ homomorphism f ⟩ EMap f o φ a ≈⟨⟩ EMap (f ∙ ( emap-ε a )) ∎ ) -- -- μ = U^T ε U^F -- emap-μ : (a : Obj A) → Hom A (FObj ( U^T ○ F^T ) (FObj ( U^T ○ F^T ) a)) (FObj ( U^T ○ F^T ) a) emap-μ a = FMap U^T ( TMap ε^T ( FObj F^T a )) μ^T : NTrans A A (( U^T ○ F^T ) ○ ( U^T ○ F^T )) ( U^T ○ F^T ) μ^T = record { TMap = emap-μ ; isNTrans = record { commute = commute }} where commute : {a b : Obj A} {f : Hom A a b} → A [ A [ (FMap (U^T ○ F^T) f) o ( emap-μ a) ] ≈ A [ ( emap-μ b ) o FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) ] ] commute {a} {b} {f} = let open ≈-Reasoning (A) in sym ( begin ( emap-μ b ) o FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) ≈⟨⟩ (FMap U^T ( TMap ε^T ( FObj F^T b ))) o (FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) ) ≈⟨⟩ (TMap μ b) o (FMap T (FMap T f)) ≈⟨ sym (nat μ) ⟩ FMap T f o ( TMap μ a ) ≈⟨⟩ (FMap (U^T ○ F^T) f) o ( emap-μ a) ∎ ) Lemma-EM10 : {x : Obj A } → A [ TMap μ^T x ≈ FMap U^T ( TMap ε^T ( FObj F^T x ) ) ] Lemma-EM10 {x} = let open ≈-Reasoning (A) in sym ( begin FMap U^T ( TMap ε^T ( FObj F^T x ) ) ≈⟨⟩ emap-μ x ≈⟨⟩ TMap μ^T x ∎ ) Lemma-EM11 : {x : Obj A } → A [ TMap μ x ≈ FMap U^T ( TMap ε^T ( FObj F^T x ) ) ] Lemma-EM11 {x} = let open ≈-Reasoning (A) in sym ( begin FMap U^T ( TMap ε^T ( FObj F^T x ) ) ≈⟨⟩ TMap μ x ∎ ) Adj^T : Adjunction A Eilenberg-MooreCategory Adj^T = record { U = U^T ; F = F^T ; η = η^T ; ε = ε^T ; isAdjunction = record { adjoint1 = λ {b} → IsAlgebra.identity (isAlgebra b) ; -- adjoint1 adjoint2 = adjoint2 } } where adjoint1 : { b : EMObj } → A [ A [ ( FMap U^T ( TMap ε^T b)) o ( TMap η^T ( FObj U^T b )) ] ≈ id1 A (FObj U^T b) ] adjoint1 {b} = let open ≈-Reasoning (A) in begin ( FMap U^T ( TMap ε^T b)) o ( TMap η^T ( FObj U^T b )) ≈⟨⟩ φ b o TMap η (obj b) ≈⟨ IsAlgebra.identity (isAlgebra b) ⟩ id1 A (obj b) ≈⟨⟩ id1 A (FObj U^T b) ∎ adjoint2 : {a : Obj A} → Eilenberg-MooreCategory [ Eilenberg-MooreCategory [ ( TMap ε^T ( FObj F^T a )) o ( FMap F^T ( TMap η^T a )) ] ≈ id1 Eilenberg-MooreCategory (FObj F^T a) ] adjoint2 {a} = let open ≈-Reasoning (A) in begin EMap (( TMap ε^T ( FObj F^T a )) ∙ ( FMap F^T ( TMap η^T a )) ) ≈⟨⟩ TMap μ a o FMap T ( TMap η a ) ≈⟨ IsMonad.unity2 M ⟩ EMap (id1 Eilenberg-MooreCategory (FObj F^T a)) ∎ open MResolution Resolution^T : MResolution A Eilenberg-MooreCategory ( record { T = T ; η = η ; μ = μ; isMonad = M } ) Resolution^T = record { UR = U^T ; FR = F^T ; ηR = η^T ; εR = ε^T ; μR = μ^T ; Adj = Adjunction.isAdjunction Adj^T ; T=UF = Lemma-EM8; μ=UεF = Lemma-EM11 } -- end