Mercurial > hg > Members > kono > Proof > category
view src/CCCSets.agda @ 1016:bbbe97d2a5ea
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Mar 2021 14:41:47 +0900 |
parents | bfd9c55ac628 |
children | 4b517d46e987 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module CCCSets where open import Level open import Category open import HomReasoning open import cat-utility open import Data.Product renaming (_×_ to _/\_ ) hiding ( <_,_> ) open import Category.Constructions.Product open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import CCC open Functor -- ccc-1 : Hom A a 1 ≅ {*} -- ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b ) -- ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c open import Category.Sets -- Sets is a CCC import Axiom.Extensionality.Propositional postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ data One {c : Level } : Set c where OneObj : One -- () in Haskell ( or any one object set ) sets : {c : Level } → CCC (Sets {c}) sets = record { 1 = One ; ○ = λ _ → λ _ → OneObj ; _∧_ = _∧_ ; <_,_> = <,> ; π = π ; π' = π' ; _<=_ = _<=_ ; _* = _* ; ε = ε ; isCCC = isCCC } where 1 : Obj Sets 1 = One ○ : (a : Obj Sets ) → Hom Sets a 1 ○ a = λ _ → OneObj _∧_ : Obj Sets → Obj Sets → Obj Sets _∧_ a b = a /\ b <,> : {a b c : Obj Sets } → Hom Sets c a → Hom Sets c b → Hom Sets c ( a ∧ b) <,> f g = λ x → ( f x , g x ) π : {a b : Obj Sets } → Hom Sets (a ∧ b) a π {a} {b} = proj₁ π' : {a b : Obj Sets } → Hom Sets (a ∧ b) b π' {a} {b} = proj₂ _<=_ : (a b : Obj Sets ) → Obj Sets a <= b = b → a _* : {a b c : Obj Sets } → Hom Sets (a ∧ b) c → Hom Sets a (c <= b) f * = λ x → λ y → f ( x , y ) ε : {a b : Obj Sets } → Hom Sets ((a <= b ) ∧ b) a ε {a} {b} = λ x → ( proj₁ x ) ( proj₂ x ) isCCC : CCC.IsCCC Sets 1 ○ _∧_ <,> π π' _<=_ _* ε isCCC = record { e2 = e2 ; e3a = λ {a} {b} {c} {f} {g} → e3a {a} {b} {c} {f} {g} ; e3b = λ {a} {b} {c} {f} {g} → e3b {a} {b} {c} {f} {g} ; e3c = e3c ; π-cong = π-cong ; e4a = e4a ; e4b = e4b ; *-cong = *-cong } where e2 : {a : Obj Sets} {f : Hom Sets a 1} → Sets [ f ≈ ○ a ] e2 {a} {f} = extensionality Sets ( λ x → e20 x ) where e20 : (x : a ) → f x ≡ ○ a x e20 x with f x e20 x | OneObj = refl e3a : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → Sets [ ( Sets [ π o ( <,> f g) ] ) ≈ f ] e3a = refl e3b : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → Sets [ Sets [ π' o ( <,> f g ) ] ≈ g ] e3b = refl e3c : {a b c : Obj Sets} {h : Hom Sets c (a ∧ b)} → Sets [ <,> (Sets [ π o h ]) (Sets [ π' o h ]) ≈ h ] e3c = refl π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ <,> f g ≈ <,> f' g' ] π-cong refl refl = refl e4a : {a b c : Obj Sets} {h : Hom Sets (c ∧ b) a} → Sets [ Sets [ ε o <,> (Sets [ h * o π ]) π' ] ≈ h ] e4a = refl e4b : {a b c : Obj Sets} {k : Hom Sets c (a <= b)} → Sets [ (Sets [ ε o <,> (Sets [ k o π ]) π' ]) * ≈ k ] e4b = refl *-cong : {a b c : Obj Sets} {f f' : Hom Sets (a ∧ b) c} → Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ] *-cong refl = refl -- ○ b -- b -----------→ 1 -- | | -- m | | ⊤ -- ↓ char m ↓ -- a -----------→ Ω -- h data Bool {c : Level } : Set c where true : Bool false : Bool data Tker {c : Level} {a : Set c} ( f : a → Bool {c} ) : Set c where isTrue : (x : a ) → f x ≡ true → Tker f irr : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≡ eq' irr refl refl = refl topos : {c : Level } → Topos (Sets {c}) sets topos {c} = record { Ω = Bool ; ⊤ = λ _ → true ; Ker = tker ; char = tchar ; isTopos = record { char-uniqueness = λ {a} {b} {h} m mono → {!!} -- extensionality Sets ( λ x → uniq h m mono x ) ; ker-iso = {!!} } } where tker : {a : Obj Sets} (h : Hom Sets a Bool) → Equalizer Sets h (Sets [ (λ _ → true) o CCC.○ sets a ]) tker {a} h = record { equalizer-c = Tker h ; equalizer = etker ; isEqualizer = record { fe=ge = extensionality Sets ( λ x → e-eq x ) ; k = k ; ek=h = λ {d} {h1} {eq} → extensionality Sets ( λ x → refl ) ; uniqueness = λ {d} {h1} {eq} {k'} ek=h → extensionality Sets ( λ x → uniq h1 eq k' ek=h x ) } } where etker : Hom Sets ( Tker h ) a etker (isTrue x eq) = x e-eq : (x : Tker h ) → h ( etker x ) ≡ true e-eq (isTrue x eq ) = eq k : {d : Obj Sets} (h₁ : Hom Sets d a) → Sets [ Sets [ h o h₁ ] ≈ Sets [ Sets [ (λ _ → true) o CCC.○ sets a ] o h₁ ] ] → Hom Sets d (Tker h) k {d} h1 hf=hg x = isTrue (h1 x) ( cong ( λ k → k x) hf=hg ) tker-cong : (x y : Tker h ) → etker x ≡ etker y → x ≡ y tker-cong ( isTrue x eq ) (isTrue .x eq' ) refl = cong ( λ ee → isTrue x ee ) ( irr eq eq' ) uniq : {d : Obj Sets} (h1 : Hom Sets d a) -- etker (k h1 eq x) ≡ etker (k' x) (eq : Sets [ Sets [ h o h1 ] ≈ Sets [ Sets [ (λ _ → true) o (λ _ → OneObj) ] o h1 ] ]) (k' : Hom Sets d (Tker h)) (ek=h : Sets [ Sets [ etker o k' ] ≈ h1 ]) (x : d) → k h1 eq x ≡ k' x uniq h1 eq k' ek=h x with cong (λ j → j x) ek=h -- etker (k h1 eq x) ≡ etker (k' x) ... | t = tker-cong (k h1 eq x) (k' x) (sym t) kiso : {a b : Obj Sets} (m : Hom Sets b a) (mono : Mono Sets m) → IsoL Sets m (Equalizer.equalizer (tker (λ x → true))) kiso {a} {b} m mono = record { iso-L = record { ≅→ = λ x → isTrue (m x) refl ; ≅← = ki1 ; iso→ = {!!} ; iso← = {!!} } ; iso≈L = {!!} } where ki1 : Hom Sets (Equalizer.equalizer-c (tker (λ x → true))) b ki1 (isTrue x eq) = {!!} tchar : {a b : Obj Sets} (m : Hom Sets b a) → Mono Sets m → Hom Sets a Bool tchar {a} {b} m mono x = true uniq : {a : Obj (Sets {c})} {b : Obj Sets} (h : Hom Sets a Bool) (m : Hom Sets b a) (mono : Mono Sets m) (x : a) → true ≡ h x uniq {a} {b} h m mono x = begin true ≡⟨⟩ (λ × → true ) x ≡⟨ cong (λ k → {!!} ) (sym (IsEqualizer.fe=ge (Equalizer.isEqualizer (tker h)) ) ) ⟩ {!!} ≡⟨ {!!} ⟩ h x ∎ where open ≡-Reasoning yy : Sets [ (λ e → {!!} ) ≈ (λ e → true) ] yy = IsEqualizer.fe=ge (Equalizer.isEqualizer (tker h)) yyy : {c : Obj Sets } → (f g : c → b ) → Sets [ Sets [ m o f ] ≈ Sets [ m o g ] ] → f ≡ g yyy f g eq = Mono.isMono mono f g eq yyy1 : {c : Obj Sets } → (f g : c → b ) → Sets [ Sets [ m o f ] ≈ Sets [ m o g ] ] → f ≡ g yyy1 f g eq = Mono.isMono mono f g eq open import graph module ccc-from-graph {c₁ c₂ : Level } (G : Graph {c₁} {c₂}) where open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) hiding ( [_] ) open Graph V = vertex G E : V → V → Set c₂ E = edge G data Objs : Set c₁ where atom : V → Objs ⊤ : Objs _∧_ : Objs → Objs → Objs _<=_ : Objs → Objs → Objs data Arrows : (b c : Objs ) → Set (c₁ ⊔ c₂) data Arrow : Objs → Objs → Set (c₁ ⊔ c₂) where --- case i arrow : {a b : V} → E a b → Arrow (atom a) (atom b) π : {a b : Objs } → Arrow ( a ∧ b ) a π' : {a b : Objs } → Arrow ( a ∧ b ) b ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a _* : {a b c : Objs } → Arrows (c ∧ b ) a → Arrow c ( a <= b ) --- case v data Arrows where id : ( a : Objs ) → Arrows a a --- case i ○ : ( a : Objs ) → Arrows a ⊤ --- case i <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b) -- case iii iv : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c -- cas iv _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c id a ・ g = g ○ a ・ g = ○ _ < f , g > ・ h = < f ・ h , g ・ h > iv f g ・ h = iv f ( g ・ h ) identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f identityL = refl identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f identityR {a} {a} {id a} = refl identityR {a} {⊤} {○ a} = refl identityR {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR identityR identityR {a} {b} {iv f g} = cong (λ k → iv f k ) identityR assoc≡ : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) ≡ ((f ・ g) ・ h) assoc≡ (id a) g h = refl assoc≡ (○ a) g h = refl assoc≡ < f , f₁ > g h = cong₂ (λ j k → < j , k > ) (assoc≡ f g h) (assoc≡ f₁ g h) assoc≡ (iv f f1) g h = cong (λ k → iv f k ) ( assoc≡ f1 g h ) -- positive intutionistic calculus PL : Category c₁ (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL = record { Obj = Objs; Hom = λ a b → Arrows a b ; _o_ = λ{a} {b} {c} x y → x ・ y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → id a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym} ; identityL = λ {a b f} → identityL {a} {b} {f} ; identityR = λ {a b f} → identityR {a} {b} {f} ; o-resp-≈ = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → assoc≡ f g h } } where o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) o-resp-≈ refl refl = refl -------- -- -- Functor from Positive Logic to Sets -- -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionalit y c₂ c₂ open import Data.List C = graphtocat.Chain G tr : {a b : vertex G} → edge G a b → ((y : vertex G) → C y a) → (y : vertex G) → C y b tr f x y = graphtocat.next f (x y) fobj : ( a : Objs ) → Set (c₁ ⊔ c₂) fobj (atom x) = ( y : vertex G ) → C y x fobj ⊤ = One fobj (a ∧ b) = ( fobj a /\ fobj b) fobj (a <= b) = fobj b → fobj a fmap : { a b : Objs } → Hom PL a b → fobj a → fobj b amap : { a b : Objs } → Arrow a b → fobj a → fobj b amap (arrow x) y = tr x y -- tr x amap π ( x , y ) = x amap π' ( x , y ) = y amap ε (f , x ) = f x amap (f *) x = λ y → fmap f ( x , y ) fmap (id a) x = x fmap (○ a) x = OneObj fmap < f , g > x = ( fmap f x , fmap g x ) fmap (iv x f) a = amap x ( fmap f a ) -- CS is a map from Positive logic to Sets -- Sets is CCC, so we have a cartesian closed category generated by a graph -- as a sub category of Sets CS : Functor PL (Sets {c₁ ⊔ c₂}) FObj CS a = fobj a FMap CS {a} {b} f = fmap {a} {b} f isFunctor CS = isf where _+_ = Category._o_ PL ++idR = IsCategory.identityR ( Category.isCategory PL ) distr : {a b c : Obj PL} { f : Hom PL a b } { g : Hom PL b c } → (z : fobj a ) → fmap (g + f) z ≡ fmap g (fmap f z) distr {a} {a₁} {a₁} {f} {id a₁} z = refl distr {a} {a₁} {⊤} {f} {○ a₁} z = refl distr {a} {b} {c ∧ d} {f} {< g , g₁ >} z = cong₂ (λ j k → j , k ) (distr {a} {b} {c} {f} {g} z) (distr {a} {b} {d} {f} {g₁} z) distr {a} {b} {c} {f} {iv {_} {_} {d} x g} z = adistr (distr {a} {b} {d} {f} {g} z) x where adistr : fmap (g + f) z ≡ fmap g (fmap f z) → ( x : Arrow d c ) → fmap ( iv x (g + f) ) z ≡ fmap ( iv x g ) (fmap f z ) adistr eq x = cong ( λ k → amap x k ) eq isf : IsFunctor PL Sets fobj fmap IsFunctor.identity isf = extensionality Sets ( λ x → refl ) IsFunctor.≈-cong isf refl = refl IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z )