view cat-utility.agda @ 439:bc0682b86b91

equ
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 30 Aug 2016 01:40:56 +0900
parents c483374f542b
children ff36c500962e
line wrap: on
line source

module cat-utility where

-- Shinji KONO <kono@ie.u-ryukyu.ac.jp>

        open import Category -- https://github.com/konn/category-agda
        open import Level
        --open import Category.HomReasoning
        open import HomReasoning

        open Functor

        id1 :   ∀{c₁ c₂ ℓ  : Level} (A : Category c₁ c₂ ℓ)  (a  : Obj A ) →  Hom A a a
        id1 A a =  (Id {_} {_} {_} {A} a)
        -- We cannot make A implicit

        record IsUniversalMapping  {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                         ( U : Functor B A )
                         ( F : Obj A → Obj B )
                         ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) )
                         ( _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) →  Hom B (F a ) b )
                         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
           field
               universalMapping :   {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → 
                             A [ A [ FMap U ( f * ) o  η a ]  ≈ f ]
               uniquness :   {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → { g :  Hom B (F a) b } → 
                             A [ A [ FMap U g o  η a ]  ≈ f ] → B [ f * ≈ g ]

        record UniversalMapping  {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                         ( U : Functor B A )
                         ( F : Obj A → Obj B )
                         ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) )
                         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
            infixr 11 _*
            field
               _* :  { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) →  Hom B (F a ) b 
               isUniversalMapping : IsUniversalMapping A B U F η _*

        record coIsUniversalMapping  {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                         ( F : Functor A B )
                         ( U : Obj B → Obj A )
                         ( ε : (b : Obj B) → Hom B ( FObj F (U b) ) b )
                         ( _*' : { b : Obj B}{ a : Obj A} → ( Hom B (FObj F a) b ) →  Hom A a (U b ) )
                         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
           field
               couniversalMapping :   {b : Obj B} { a : Obj A } → { f : Hom B (FObj F a) b } → 
                             B [ B [ ε b o FMap F ( f *' )  ]  ≈ f ]
               couniquness :   {b : Obj B} { a : Obj A } → { f : Hom B (FObj F a) b } → { g :  Hom A a (U b) } → 
                             B [ B [ ε b o FMap F g ]  ≈ f ] → A [ f *' ≈ g ]

        record coUniversalMapping  {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                         ( F : Functor A B )
                         ( U : Obj B → Obj A )
                         ( ε : (b : Obj B) → Hom B ( FObj F (U b) ) b )
                         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
            infixr 11 _*'
            field
               _*' :  { b : Obj B}{ a : Obj A} → ( Hom B (FObj F a) b ) →  Hom A a (U b ) 
               iscoUniversalMapping : coIsUniversalMapping A B F U ε _*'

        open NTrans
        open import Category.Cat
        record IsAdjunction  {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                         ( U : Functor B A )
                         ( F : Functor A B )
                         ( η : NTrans A A identityFunctor ( U ○  F ) )
                         ( ε : NTrans B B  ( F ○  U ) identityFunctor )
                         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
           field
               adjoint1 :   { b : Obj B } →
                             A [ A [ ( FMap U ( TMap ε b ))  o ( TMap η ( FObj U b )) ]  ≈ id1 A (FObj U b) ]
               adjoint2 :   {a : Obj A} →
                             B [ B [ ( TMap ε ( FObj F a ))  o ( FMap F ( TMap η a )) ]  ≈ id1 B (FObj F a) ]

        record Adjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                         ( U : Functor B A )
                         ( F : Functor A B )
                         ( η : NTrans A A identityFunctor ( U ○  F ) )
                         ( ε : NTrans B B  ( F ○  U ) identityFunctor )
                         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
            field
               isAdjunction : IsAdjunction A B U F η ε
            U-functor =  U
            F-functor =  F
            Eta = η
            Epsiron = ε


        record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) 
                         ( T : Functor A A )
                         ( η : NTrans A A identityFunctor T )
                         ( μ : NTrans A A (T ○ T) T)
                         : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
           field
              assoc  : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈  A [  TMap μ a o FMap T (TMap μ a) ] ]
              unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
              unity2 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ]

        record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T)
               : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
          field
            isMonad : IsMonad A T η μ
             -- g ○ f = μ(c) T(g) f
          join : { a b : Obj A } → { c : Obj A } →
                              ( Hom A b ( FObj T c )) → (  Hom A a ( FObj T b)) → Hom A a ( FObj T c )
          join {_} {_} {c} g f = A [ TMap μ c  o A [ FMap T g o f ] ]


        Functor*Nat :  {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'')
            (F : Functor B C) → { G H : Functor A B } → ( n : NTrans A B G H ) → NTrans A C (F ○  G) (F ○ H)
        Functor*Nat A {B} C F {G} {H} n = record {
               TMap  = λ a → FMap F (TMap n a)
               ; isNTrans = record {
                    commute = commute
               }
            } where
                 commute : {a b : Obj A} {f : Hom A a b} 
                    → C [ C [ (FMap F ( FMap H f )) o  ( FMap F (TMap n a)) ]  ≈ C [ (FMap F (TMap n b )) o  (FMap F (FMap G f))  ] ]
                 commute  {a} {b} {f}  = let open ≈-Reasoning (C) in
                    begin  
                       (FMap F ( FMap H f )) o  ( FMap F (TMap n a))
                    ≈⟨ sym (distr F) ⟩
                       FMap F ( B [ (FMap H f)  o TMap n a ])
                    ≈⟨ IsFunctor.≈-cong (isFunctor F) ( nat n ) ⟩
                       FMap F ( B [ (TMap n b ) o FMap G f ] )
                    ≈⟨ distr F ⟩
                       (FMap F (TMap n b )) o  (FMap F (FMap G f))


        Nat*Functor :  {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'')
            { G H : Functor B C } → ( n : NTrans B C G H ) → (F : Functor A B) → NTrans A C (G ○  F) (H ○ F)
        Nat*Functor A {B} C {G} {H} n F = record {
               TMap  = λ a → TMap n (FObj F a)
               ; isNTrans = record {
                    commute = commute
               }
            } where
                 commute : {a b : Obj A} {f : Hom A a b} 
                    → C [ C [ ( FMap H (FMap F f )) o  ( TMap n (FObj F a)) ]  ≈ C [ (TMap n (FObj F b )) o  (FMap G (FMap F f))  ] ]
                 commute  {a} {b} {f}  =  IsNTrans.commute ( isNTrans n) 

        -- T ≃  (U_R ○ F_R)
        -- μ = U_R ε F_R
        --      nat-ε
        --      nat-η     -- same as η but has different types

        record MResolution {c₁ c₂ ℓ  c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) ( B : Category c₁' c₂' ℓ' ) 
              ( T : Functor A A ) 
              -- { η : NTrans A A identityFunctor T }
              -- { μ : NTrans A A (T ○ T) T }
              -- { M : Monad A T  η μ }
              ( UR : Functor B A ) ( FR : Functor A B )
              { ηR : NTrans A A identityFunctor  ( UR ○ FR ) } 
              { εR : NTrans B B ( FR ○ UR ) identityFunctor } 
              { μR : NTrans A A ( (UR ○ FR)  ○ ( UR ○ FR )) ( UR ○ FR  ) }
              ( Adj : Adjunction A B UR FR ηR εR  )
                        : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
                   field
                      T=UF  :  T ≃  (UR ○ FR) 
                      μ=UεF : {x : Obj A } → A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ]
                      -- ηR=η  : {x : Obj A } → A [ TMap ηR x  ≈  TMap η x ] -- We need T → UR FR conversion
                      -- μR=μ  : {x : Obj A } → A [ TMap μR x  ≈  TMap μ x ]


        --
        --         e             f
        --    c  -------→ a ---------→ b
        --    ^        .     ---------→
        --    |      .            g
        --    |k   .
        --    |  . h
        --    d

        record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  {c a b : Obj A} (e : Hom A c a) (f g : Hom A a b)  : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
           field
              fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ]
              k : {d : Obj A}  (h : Hom A d a) → A [ A [ f  o  h ] ≈ A [ g  o h ] ] → Hom A d c
              ek=h : {d : Obj A}  → ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  A [ A [ e  o k {d} h eq ] ≈ h ]
              uniqueness : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } →
                      A [ A [ e  o k' ] ≈ h ] → A [ k {d} h eq  ≈ k' ]
           equalizer : Hom A c a
           equalizer = e

        -- 
        -- Product
        --
        --                c
        --        f       |        g
        --                |f×g
        --                v
        --    a <-------- ab ---------→ b
        --         π1            π2


        record Product { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  (a b ab : Obj A) 
              ( π1 : Hom A ab a )
              ( π2 : Hom A ab b )
                    : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
           field
              _×_ : {c : Obj A} ( f : Hom A c a ) → ( g : Hom A c b ) → Hom A c ab
              π1fxg=f : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π1  o ( f × g )  ] ≈  f ]
              π2fxg=g : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π2  o ( f × g )  ] ≈  g ]
              uniqueness : {c : Obj A} { h : Hom A c ab }  → A [  ( A [ π1  o h  ] ) × ( A [ π2  o h  ] ) ≈  h ]
              ×-cong : {c : Obj A} { f f' : Hom A c a } → { g g' : Hom A c b } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ f × g ≈ f' × g' ] 
           axb : Obj A
           axb = ab
           pi1 : Hom A ab a 
           pi1  = π1 
           pi2 : Hom A ab b 
           pi2  = π2 

        -- Pullback
        --         f
        --     a ------→ c
        --     ^          ^                 
        --  π1 |          |g
        --     |          |
        --    ab ------→ b
        --     ^   π2
        --     |
        --     d   
        --
        record Pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  (a b c ab : Obj A) 
              ( f : Hom A a c )    ( g : Hom A b c )
              ( π1 : Hom A ab a )  ( π2 : Hom A ab b )
                 : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
           field
              commute : A [ A [ f  o π1 ] ≈ A [ g  o π2 ] ]
              p : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → A [ A [ f  o π1' ] ≈ A [ g  o π2' ] ] → Hom A d ab
              π1p=π1 :  { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f  o π1' ] ≈ A [ g  o π2' ]  ] } 
                     →  A [ A [ π1  o p eq ] ≈  π1' ] 
              π2p=π2 :  { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f  o π1' ] ≈ A [ g  o π2' ]  ] } 
                     →  A [ A [ π2  o p eq ] ≈  π2' ] 
              uniqueness : { d : Obj A } → ( p' : Hom A d ab ) → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f  o π1' ] ≈ A [ g  o π2' ] ]  } 
                     →  { π1p=π1' : A [ A [ π1  o p' ] ≈  π1' ] }
                     →  { π2p=π2' : A [ A [ π2  o p' ] ≈  π2' ] }
                     →  A [ p eq  ≈ p' ]
           axb : Obj A
           axb = ab
           pi1 : Hom A ab a 
           pi1  = π1 
           pi2 : Hom A ab b 
           pi2  = π2 

        --
        -- Limit
        --
        -----

        -- Constancy Functor

        K : { c₁' c₂' ℓ' : Level}  (A : Category c₁' c₂' ℓ') { c₁'' c₂'' ℓ'' : Level} ( I : Category c₁'' c₂'' ℓ'' ) 
            → ( a : Obj A ) → Functor I A
        K A I a = record {
              FObj = λ i → a ;
              FMap = λ f → id1 A a ;
                isFunctor = let  open ≈-Reasoning (A) in record {
                       ≈-cong   = λ f=g → refl-hom
                     ; identity = refl-hom
                     ; distr    = sym idL
                }
          }


        record Limit { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A )
             ( a0 : Obj A ) (  t0 : NTrans I A ( K A I a0 ) Γ ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where
          field
             limit :  ( a : Obj A ) → ( t : NTrans I A ( K A I a ) Γ ) → Hom A a a0
             t0f=t :  { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → ∀ { i : Obj I } →
                 A [ A [ TMap t0 i o  limit a t ]  ≈ TMap t i ]
             limit-uniqueness : { a : Obj A } →  { t : NTrans I A ( K A I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } →
                 A [ A [ TMap t0 i o  f ]  ≈ TMap t i ] ) → A [ limit a t ≈ f ]
          A0 : Obj A
          A0 = a0
          T0 : NTrans I A ( K A I a0 ) Γ
          T0 = t0