Mercurial > hg > Members > kono > Proof > category
view comparison-functor-conv.agda @ 439:bc0682b86b91
equ
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Aug 2016 01:40:56 +0900 |
parents | d6a6dd305da2 |
children |
line wrap: on
line source
-- -- -- -- -- -- -- -- -- Comparison Functor of Kelisli Category -- defines U_K and F_K as a resolution of Monad -- checks Adjointness -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> -- -- -- -- -- -- -- -- open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat open import Relation.Binary.Core module comparison-functor-conv { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { M' : Monad A T η μ } {c₁' c₂' ℓ' : Level} ( B : Category c₁' c₂' ℓ' ) { U_K : Functor B A } { F_K : Functor A B } { η_K : NTrans A A identityFunctor ( U_K ○ F_K ) } { ε_K : NTrans B B ( F_K ○ U_K ) identityFunctor } { μ_K : NTrans A A (( U_K ○ F_K ) ○ ( U_K ○ F_K )) ( U_K ○ F_K ) } ( M : Monad A (U_K ○ F_K) η_K μ_K ) ( AdjK : Adjunction A B U_K F_K η_K ε_K ) ( RK : MResolution A B T U_K F_K {η_K} {ε_K} {μ_K} AdjK ) where open import kleisli {c₁} {c₂} {ℓ} {A} { T } { η } { μ } { M' } open Functor open NTrans open Category.Cat.[_]_~_ open MResolution ≃-sym : {c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } {c₁' c₂' ℓ' : Level} { D : Category c₁' c₂' ℓ' } {F G : Functor C D} → F ≃ G → G ≃ F ≃-sym {_} {_} {_} {C} {_} {_} {_} {D} {F} {G} F≃G f = helper (F≃G f) where helper : ∀{a b c d} {f : Hom D a b} {g : Hom D c d} → [ D ] f ~ g → [ D ] g ~ f helper (Category.Cat.refl Ff≈Gf) = Category.Cat.refl {C = D} (IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory D)) Ff≈Gf) -- to T=UF constraints happy hoge : {c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } {c₁' c₂' ℓ' : Level} { D : Category c₁' c₂' ℓ' } {F G : Functor C D} → F ≃ G → F ≃ G hoge {_} {_} {_} {C} {_} {_} {_} {D} {F} {G} F≃G f = helper (F≃G f) where helper : ∀{a b c d} {f : Hom D a b} {g : Hom D c d} → [ D ] f ~ g → [ D ] f ~ g helper (Category.Cat.refl Ff≈Gf) = Category.Cat.refl Ff≈Gf open KleisliHom RHom = λ (a b : Obj A) → KleisliHom {c₁} {c₂} {ℓ} {A} { U_K ○ F_K } a b TtoK : (a b : Obj A) → (KHom a b) → {g h : Hom A (FObj T b) (FObj ( U_K ○ F_K) b) } → ([ A ] g ~ h) → Hom A a (FObj ( U_K ○ F_K ) b) TtoK _ _ f {g} (Category.Cat.refl _) = A [ g o (KMap f) ] TKMap : {a b : Obj A} → (f : KHom a b) → Hom A a (FObj ( U_K ○ F_K ) b) TKMap {a} {b} f = TtoK a b f {_} {_} ((hoge (T=UF RK)) (id1 A b)) KtoT : (a b : Obj A) → (RHom a b) → {g h : Hom A (FObj ( U_K ○ F_K ) b) (FObj T b) } → ([ A ] g ~ h) → Hom A a (FObj T b) KtoT _ _ f {g} {h} (Category.Cat.refl eq) = A [ g o (KMap f) ] KTMap : {a b : Obj A} → (f : RHom a b) → Hom A a (FObj T b) KTMap {a} {b} f = KtoT a b f {_} {_} (( ≃-sym (T=UF RK)) (id1 A b)) TKMap-cong : {a b : Obj A} {f g : KHom a b} → A [ KMap f ≈ KMap g ] → A [ TKMap f ≈ TKMap g ] TKMap-cong {a} {b} {f} {g} eq = helper a b f g eq ((hoge (T=UF RK))( id1 A b )) where open ≈-Reasoning (A) helper : (a b : Obj A) (f g : KHom a b) → A [ KMap f ≈ KMap g ] → {conv : Hom A (FObj T b) (FObj ( U_K ○ F_K ) b) } → ([ A ] conv ~ conv) → A [ TKMap f ≈ TKMap g ] helper _ _ _ _ eq (Category.Cat.refl _) = (Category.IsCategory.o-resp-≈ (Category.isCategory A)) eq refl-hom kfmap : {a b : Obj A} (f : KHom a b) → Hom B (FObj F_K a) (FObj F_K b) kfmap {_} {b} f = B [ TMap ε_K (FObj F_K b) o FMap F_K (TKMap f) ] open Adjunction K_T : Functor KleisliCategory B K_T = record { FObj = FObj F_K ; FMap = kfmap ; isFunctor = record { ≈-cong = ≈-cong ; identity = identity ; distr = distr1 } } where identity : {a : Obj A} → B [ kfmap (K-id {a}) ≈ id1 B (FObj F_K a) ] identity {a} = let open ≈-Reasoning (B) in begin kfmap (K-id {a}) ≈⟨⟩ TMap ε_K (FObj F_K a) o FMap F_K (TKMap (K-id {a})) ≈⟨⟩ TMap ε_K (FObj F_K a) o FMap F_K (TMap η_K a) ≈⟨ IsAdjunction.adjoint2 (isAdjunction AdjK) ⟩ id1 B (FObj F_K a) ∎ ≈-cong : {a b : Obj A} → {f g : KHom a b} → A [ KMap f ≈ KMap g ] → B [ kfmap f ≈ kfmap g ] ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (B) in begin kfmap f ≈⟨⟩ TMap ε_K (FObj F_K b) o FMap F_K (TKMap f) ≈⟨ cdr ( fcong F_K (TKMap-cong f≈g)) ⟩ TMap ε_K (FObj F_K b) o FMap F_K (TKMap g) ≈⟨⟩ kfmap g ∎ distr1 : {a b c : Obj A} {f : KHom a b} {g : KHom b c} → B [ kfmap (g * f) ≈ (B [ kfmap g o kfmap f ] )] distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (B) in begin kfmap (g * f) ≈⟨⟩ TMap ε_K (FObj F_K c) o FMap F_K (TKMap (g * f)) ≈⟨⟩ TMap ε_K (FObj F_K c) o FMap F_K (A [ TMap μ_K c o A [ FMap ( U_K ○ F_K ) (TKMap g) o TKMap f ] ] ) ≈⟨ cdr ( distr F_K ) ⟩ TMap ε_K (FObj F_K c) o ( FMap F_K (TMap μ_K c) o ( FMap F_K (A [ FMap ( U_K ○ F_K ) (TKMap g) o TKMap f ]))) ≈⟨ cdr (cdr ( distr F_K )) ⟩ TMap ε_K (FObj F_K c) o ( FMap F_K (TMap μ_K c) o (( FMap F_K (FMap ( U_K ○ F_K ) (TKMap g))) o (FMap F_K (TKMap f)))) ≈⟨ cdr assoc ⟩ TMap ε_K (FObj F_K c) o ((( FMap F_K (TMap μ_K c) o ( FMap F_K (FMap (U_K ○ F_K) (TKMap g))))) o (FMap F_K (TKMap f))) ≈⟨ cdr (car (car ( fcong F_K ( μ=UεF RK )))) ⟩ TMap ε_K (FObj F_K c) o (( FMap F_K ( FMap U_K ( TMap ε_K ( FObj F_K c ) )) o ( FMap F_K (FMap (U_K ○ F_K) (TKMap g)))) o (FMap F_K (TKMap f))) ≈⟨ sym (cdr assoc) ⟩ TMap ε_K (FObj F_K c) o (( FMap F_K ( FMap U_K ( TMap ε_K ( FObj F_K c ) ))) o (( FMap F_K (FMap (U_K ○ F_K) (TKMap g))) o (FMap F_K (TKMap f)))) ≈⟨ assoc ⟩ (TMap ε_K (FObj F_K c) o ( FMap F_K ( FMap U_K ( TMap ε_K ( FObj F_K c ) )))) o (( FMap F_K (FMap (U_K ○ F_K) (TKMap g))) o (FMap F_K (TKMap f))) ≈⟨ car (sym (nat ε_K)) ⟩ (TMap ε_K (FObj F_K c) o ( TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c)))) o (( FMap F_K (FMap (U_K ○ F_K) (TKMap g))) o (FMap F_K (TKMap f))) ≈⟨ sym assoc ⟩ TMap ε_K (FObj F_K c) o (( TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c))) o ((( FMap F_K (FMap (U_K ○ F_K) (TKMap g)))) o (FMap F_K (TKMap f)))) ≈⟨ cdr assoc ⟩ TMap ε_K (FObj F_K c) o ((( TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c))) o (( FMap F_K (FMap (U_K ○ F_K) (TKMap g))))) o (FMap F_K (TKMap f))) ≈⟨ cdr ( car ( begin TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c)) o ((FMap F_K (FMap (U_K ○ F_K) (TKMap g)))) ≈⟨⟩ TMap ε_K (FObj (F_K ○ U_K) (FObj F_K c)) o (FMap (F_K ○ U_K) (FMap F_K (TKMap g))) ≈⟨ sym (nat ε_K) ⟩ ( FMap F_K (TKMap g)) o (TMap ε_K (FObj F_K b)) ∎ )) ⟩ TMap ε_K (FObj F_K c) o ((( FMap F_K (TKMap g)) o (TMap ε_K (FObj F_K b))) o FMap F_K (TKMap f)) ≈⟨ cdr (sym assoc) ⟩ TMap ε_K (FObj F_K c) o (( FMap F_K (TKMap g)) o (TMap ε_K (FObj F_K b) o FMap F_K (TKMap f))) ≈⟨ assoc ⟩ (TMap ε_K (FObj F_K c) o FMap F_K (TKMap g)) o (TMap ε_K (FObj F_K b) o FMap F_K (TKMap f)) ≈⟨⟩ kfmap g o kfmap f ∎