Mercurial > hg > Members > kono > Proof > category
view adj-monad.agda @ 910:bd5a28f72e2c
close
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 02 May 2020 03:03:51 +0900 |
parents | a5f2ca67e7c5 |
children |
line wrap: on
line source
-- Monad -- Category A -- A = Category -- Functor T : A → A --T(a) = t(a) --T(f) = tf(f) open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat module adj-monad where ---- -- -- Adjunction to Monad -- ---- open NTrans open Functor UεF : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) → NTrans A A (( U ○ F ) ○ ( U ○ F )) ( U ○ F ) UεF A B U F ε = lemma11 ( Functor*Nat A {B} A U {( F ○ U) ○ F} {identityFunctor ○ F} ( Nat*Functor A {B} B { F ○ U} {identityFunctor} ε F) ) where lemma11 : NTrans A A ( U ○ ((F ○ U) ○ F )) ( U ○ (identityFunctor ○ F) ) → NTrans A A (( U ○ F ) ○ ( U ○ F )) ( U ○ F ) lemma11 n = record { TMap = \a → TMap n a; isNTrans = record { commute = IsNTrans.commute ( isNTrans n ) }} Adj2Monad : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') → Adjunction A B → Monad A Adj2Monad A B adj = record { T = T ; η = η ; μ = μ ; isMonad = record { assoc = assoc1; unity1 = unity1; unity2 = unity2 } } where U : Functor B A U = Adjunction.U adj F : Functor A B F = Adjunction.F adj η : NTrans A A identityFunctor ( U ○ F ) η = Adjunction.η adj ε : NTrans B B ( F ○ U ) identityFunctor ε = Adjunction.ε adj T : Functor A A T = U ○ F μ : NTrans A A ( T ○ T ) T μ = UεF A B U F ε lemma-assoc1 : {a b : Obj B} → ( f : Hom B a b) → B [ B [ f o TMap ε a ] ≈ B [ TMap ε b o FMap F (FMap U f ) ] ] lemma-assoc1 f = IsNTrans.commute ( isNTrans ε ) assoc1 : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] assoc1 {a} = let open ≈-Reasoning (A) in begin TMap μ a o TMap μ ( FObj T a ) ≈⟨⟩ (FMap U (TMap ε ( FObj F a ))) o (FMap U (TMap ε ( FObj F ( FObj U (FObj F a ))))) ≈⟨ sym (distr U) ⟩ FMap U (B [ TMap ε ( FObj F a ) o TMap ε ( FObj F ( FObj U (FObj F a ))) ] ) ≈⟨ (IsFunctor.≈-cong (isFunctor U)) (lemma-assoc1 ( TMap ε (FObj F a ))) ⟩ FMap U (B [ (TMap ε ( FObj F a )) o FMap F (FMap U (TMap ε ( FObj F a ))) ] ) ≈⟨ distr U ⟩ (FMap U (TMap ε ( FObj F a ))) o FMap U (FMap F (FMap U (TMap ε ( FObj F a )))) ≈⟨⟩ TMap μ a o FMap T (TMap μ a) ∎ unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity1 {a} = let open ≈-Reasoning (A) in begin TMap μ a o TMap η ( FObj T a ) ≈⟨⟩ (FMap U (TMap ε ( FObj F a ))) o TMap η ( FObj U ( FObj F a )) ≈⟨ IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj ) ⟩ id (FObj U ( FObj F a )) ≈⟨⟩ id (FObj T a) ∎ unity2 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity2 {a} = let open ≈-Reasoning (A) in begin TMap μ a o (FMap T (TMap η a )) ≈⟨⟩ (FMap U (TMap ε ( FObj F a ))) o (FMap U ( FMap F (TMap η a ))) ≈⟨ sym (distr U ) ⟩ FMap U ( B [ (TMap ε ( FObj F a )) o ( FMap F (TMap η a )) ]) ≈⟨ (IsFunctor.≈-cong (isFunctor U)) (IsAdjunction.adjoint2 ( Adjunction.isAdjunction adj )) ⟩ FMap U ( id1 B (FObj F a) ) ≈⟨ IsFunctor.identity ( isFunctor U ) ⟩ id (FObj T a) ∎