Mercurial > hg > Members > kono > Proof > category
view subcat.agda @ 920:c10ee19a1ea3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 04 May 2020 14:34:42 +0900 |
parents | 635418b4b2f3 |
children |
line wrap: on
line source
open import Category open import Level module subcat {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁' c₂' ℓ') (B : Category c₁ c₂ ℓ) (F : Functor A B) where open import cat-utility open import Relation.Binary.PropositionalEquality open Functor FCat : Category c₁' c₂ ℓ FCat = record { Obj = Obj A ; Hom = λ a b → Hom B (FObj F a) (FObj F b) ; _o_ = Category._o_ B ; _≈_ = Category._≈_ B ; Id = λ {a} → id1 B (FObj F a) ; isCategory = record { isEquivalence = IsCategory.isEquivalence (Category.isCategory B) ; identityL = λ {a b f} → IsCategory.identityL (Category.isCategory B) ; identityR = λ {a b f} → IsCategory.identityR (Category.isCategory B) ; o-resp-≈ = λ {a b c f g h i} → IsCategory.o-resp-≈ (Category.isCategory B); associative = λ{a b c d f g h } → IsCategory.associative (Category.isCategory B) } }