Mercurial > hg > Members > kono > Proof > category
view pullback.agda @ 282:c831abfa9bf4
limit on going...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Sep 2013 17:23:40 +0900 |
parents | dbd2044add2a |
children | 5492a0681f55 |
line wrap: on
line source
-- Pullback from product and equalizer -- -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> ---- open import Category -- https://github.com/konn/category-agda open import Level module pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ') ( Γ : Functor I A ) where open import HomReasoning open import cat-utility -- -- Pullback from equalizer and product -- f -- a -------> c -- ^ ^ -- π1 | |g -- | | -- ab -------> b -- ^ π2 -- | -- | e = equalizer (f π1) (g π1) -- | -- d <------------------ d' -- k (π1' × π2' ) open Equalizer open Product open Pullback pullback-from : (a b c ab d : Obj A) ( f : Hom A a c ) ( g : Hom A b c ) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( e : Hom A d ab ) ( eqa : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g ) ( prod : Product A a b ab π1 π2 ) → Pullback A a b c d f g ( A [ π1 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] ) ( A [ π2 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] ) pullback-from a b c ab d f g π1 π2 e eqa prod = record { commute = commute1 ; p = p1 ; π1p=π1 = λ {d} {π1'} {π2'} {eq} → π1p=π11 {d} {π1'} {π2'} {eq} ; π2p=π2 = λ {d} {π1'} {π2'} {eq} → π2p=π21 {d} {π1'} {π2'} {eq} ; uniqueness = uniqueness1 } where commute1 : A [ A [ f o A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ≈ A [ g o A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ] commute1 = let open ≈-Reasoning (A) in begin f o ( π1 o equalizer (eqa ( f o π1 ) ( g o π2 )) ) ≈⟨ assoc ⟩ ( f o π1 ) o equalizer (eqa ( f o π1 ) ( g o π2 )) ≈⟨ fe=ge (eqa (A [ f o π1 ]) (A [ g o π2 ])) ⟩ ( g o π2 ) o equalizer (eqa ( f o π1 ) ( g o π2 )) ≈↑⟨ assoc ⟩ g o ( π2 o equalizer (eqa ( f o π1 ) ( g o π2 )) ) ∎ lemma1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → A [ A [ A [ f o π1 ] o (prod × π1') π2' ] ≈ A [ A [ g o π2 ] o (prod × π1') π2' ] ] lemma1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in begin ( f o π1 ) o (prod × π1') π2' ≈↑⟨ assoc ⟩ f o ( π1 o (prod × π1') π2' ) ≈⟨ cdr (π1fxg=f prod) ⟩ f o π1' ≈⟨ eq ⟩ g o π2' ≈↑⟨ cdr (π2fxg=g prod) ⟩ g o ( π2 o (prod × π1') π2' ) ≈⟨ assoc ⟩ ( g o π2 ) o (prod × π1') π2' ∎ p1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d' d p1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) ( lemma1 eq ) π1p=π11 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π1' ] π1p=π11 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in begin ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq ≈⟨⟩ ( π1 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ≈↑⟨ assoc ⟩ π1 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ) ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩ π1 o (_×_ prod π1' π2' ) ≈⟨ π1fxg=f prod ⟩ π1' ∎ π2p=π21 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π2' ] π2p=π21 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in begin ( π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq ≈⟨⟩ ( π2 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ≈↑⟨ assoc ⟩ π2 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ) ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩ π2 o (_×_ prod π1' π2' ) ≈⟨ π2fxg=g prod ⟩ π2' ∎ uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → {eq1 : A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π1' ]} → {eq2 : A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π2' ]} → A [ p1 eq ≈ p' ] uniqueness1 {d'} p' {π1'} {π2'} {eq} {eq1} {eq2} = let open ≈-Reasoning (A) in begin p1 eq ≈⟨⟩ k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ≈⟨ Equalizer.uniqueness (eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e}) ( begin e o p' ≈⟨⟩ equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p' ≈↑⟨ Product.uniqueness prod ⟩ (prod × ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p') ) ( π2 o (equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p')) ≈⟨ ×-cong prod (assoc) (assoc) ⟩ (prod × (A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ])) (A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ]) ≈⟨ ×-cong prod eq1 eq2 ⟩ ((prod × π1') π2') ∎ ) ⟩ p' ∎ ------ -- -- Limit -- ----- -- Constancy Functor K : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) → ( a : Obj A ) → Functor I A K I a = record { FObj = λ i → a ; FMap = λ f → id1 A a ; isFunctor = let open ≈-Reasoning (A) in record { ≈-cong = λ f=g → refl-hom ; identity = refl-hom ; distr = sym idL } } open NTrans record Limit { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where field limit : ( a : Obj A ) → ( t : NTrans I A ( K I a ) Γ ) → Hom A a a0 t0f=t : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → ∀ { i : Obj I } → A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ] limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } → A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit a t ≈ f ] A0 : Obj A A0 = a0 T0 : NTrans I A ( K I a0 ) Γ T0 = t0 -------------------------------- -- -- If we have two limits on c and c', there are isomorphic pair h, h' open Limit iso-l : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) ( t0' : NTrans I A ( K I a0' ) Γ ) ( lim : Limit I Γ a0 t0 ) → ( lim' : Limit I Γ a0' t0' ) → Hom A a0 a0' iso-l I Γ a0 a0' t0 t0' lim lim' = limit lim' a0 t0 iso-r : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) ( t0' : NTrans I A ( K I a0' ) Γ ) ( lim : Limit I Γ a0 t0 ) → ( lim' : Limit I Γ a0' t0' ) → Hom A a0' a0 iso-r I Γ a0 a0' t0 t0' lim lim' = limit lim a0' t0' iso-lr : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) ( t0' : NTrans I A ( K I a0' ) Γ ) ( lim : Limit I Γ a0 t0 ) → ( lim' : Limit I Γ a0' t0' ) → ∀{ i : Obj I } → A [ A [ iso-l I Γ a0 a0' t0 t0' lim lim' o iso-r I Γ a0 a0' t0 t0' lim lim' ] ≈ id1 A a0' ] iso-lr I Γ a0 a0' t0 t0' lim lim' {i} = let open ≈-Reasoning (A) in begin limit lim' a0 t0 o limit lim a0' t0' ≈↑⟨ limit-uniqueness lim' ( λ {i} → ( begin TMap t0' i o ( limit lim' a0 t0 o limit lim a0' t0' ) ≈⟨ assoc ⟩ ( TMap t0' i o limit lim' a0 t0 ) o limit lim a0' t0' ≈⟨ car ( t0f=t lim' ) ⟩ TMap t0 i o limit lim a0' t0' ≈⟨ t0f=t lim ⟩ TMap t0' i ∎) ) ⟩ limit lim' a0' t0' ≈⟨ limit-uniqueness lim' idR ⟩ id a0' ∎ open import CatExponetial open Functor -------------------------------- -- -- Contancy Functor KI : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) → Functor A ( A ^ I ) KI { c₁'} {c₂'} {ℓ'} I = record { FObj = λ a → K I a ; FMap = λ f → record { -- NTrans I A (K I a) (K I b) TMap = λ a → f ; isNTrans = record { commute = λ {a b f₁} → commute1 {a} {b} {f₁} f } } ; isFunctor = let open ≈-Reasoning (A) in record { ≈-cong = λ f=g {x} → f=g ; identity = refl-hom ; distr = refl-hom } } where commute1 : {a b : Obj I} {f₁ : Hom I a b} → {a' b' : Obj A} → (f : Hom A a' b' ) → A [ A [ FMap (K I b') f₁ o f ] ≈ A [ f o FMap (K I a') f₁ ] ] commute1 {a} {b} {f₁} {a'} {b'} f = let open ≈-Reasoning (A) in begin FMap (K I b') f₁ o f ≈⟨ idL ⟩ f ≈↑⟨ idR ⟩ f o FMap (K I a') f₁ ∎ --------- -- -- limit gives co universal mapping ( i.e. adjunction ) -- -- F = KI I : Functor A (A ^ I) -- U = λ b → A0 (lim b {a0 b} {t0 b} -- ε = λ b → T0 ( lim b {a0 b} {t0 b} ) limit2couniv : ( lim : ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K I a0 ) Γ } → Limit I Γ a0 t0 ) → ( a0 : ( b : Functor I A ) → Obj A ) ( t0 : ( b : Functor I A ) → NTrans I A ( K I (a0 b) ) b ) → coUniversalMapping A ( A ^ I ) (KI I) (λ b → A0 (lim b {a0 b} {t0 b} ) ) ( λ b → T0 ( lim b {a0 b} {t0 b} ) ) limit2couniv lim a0 t0 = record { -- F U ε _*' = λ {b} {a} k → limit (lim b {a0 b} {t0 b} ) a k ; -- η iscoUniversalMapping = record { couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ; couniquness = couniquness2 } } where couniversalMapping1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} → A ^ I [ A ^ I [ T0 (lim b {a0 b} {t0 b}) o FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ] ≈ f ] couniversalMapping1 {b} {a} {f} {i} = let open ≈-Reasoning (A) in begin TMap (T0 (lim b {a0 b} {t0 b})) i o TMap ( FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ) i ≈⟨⟩ TMap (t0 b) i o (limit (lim b) a f) ≈⟨ t0f=t (lim b) ⟩ TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ] ∎ couniquness2 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (A0 (lim b {a0 b} {t0 b} ))} → ( ∀ { i : Obj I } → A [ A [ TMap (T0 (lim b {a0 b} {t0 b} )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] ) → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ] couniquness2 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin limit (lim b {a0 b} {t0 b} ) a f ≈⟨ limit-uniqueness ( lim b {a0 b} {t0 b} ) lim-g=f ⟩ g ∎ open import Category.Cat open coUniversalMapping univ2limit : ( U : Obj (A ^ I ) → Obj A ) ( ε : ( b : Obj (A ^ I ) ) → NTrans I A (K I (U b)) b ) ( univ : coUniversalMapping A (A ^ I) (KI I) U (ε) ) → ( Γ : Functor I A ) → Limit I Γ (U Γ) (ε Γ) univ2limit U ε univ Γ = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } where limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a (U Γ) limit1 a t = _*' univ {_} {a} t t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} → A [ A [ TMap (ε Γ) i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap (ε Γ) i o limit1 a t ≈⟨⟩ TMap (ε Γ) i o _*' univ {Γ} {a} t ≈⟨ coIsUniversalMapping.couniversalMapping ( iscoUniversalMapping univ) {Γ} {a} {t} ⟩ TMap t i ∎ limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a (U Γ)} → ( ∀ { i : Obj I } → A [ A [ TMap (ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} εf=t = let open ≈-Reasoning (A) in begin _*' univ t ≈⟨ ( coIsUniversalMapping.couniquness ( iscoUniversalMapping univ) ) εf=t ⟩ f ∎ ----- -- -- product on arbitrary index -- record IProduct { c c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Set c) ( p : Obj A ) -- product ( ai : I → Obj A ) -- families ( pi : (i : I ) → Hom A p ( ai i ) ) -- projections : Set (c ⊔ ℓ ⊔ (c₁ ⊔ c₂)) where field product : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( product qi ) ] ≈ (qi i) ] ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ product ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] ip-cong : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ( qi' : (i : I) → Hom A q (ai i) ) → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ product qi ≈ product qi' ] open IProduct -- -- limit from equalizer and product -- -- -- ai -- ^ ^ -- | | pi -- | | -- | p -- | ^ -- | | -- | | e = equalizer (f pi) (g pi') -- | | -- lim <------------------ d' -- k ( product pi ) open Equalizer limit-equalizer : ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) → IProduct {c₁'} A (Obj I) p ai pi ) ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g ) ( Γ : Functor I A ) → ( lim p : Obj A ) ( e : Hom A lim p ) ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) → NTrans I A (K I lim) Γ limit-equalizer prod eqa Γ lim p e proj = record { TMap = tmap ; isNTrans = record { commute = commute1 } } where tmap : (i : Obj I) → Hom A (FObj (K I lim) i) (FObj Γ i) tmap i = A [ ( proj i ) o e ] commute1 : {a b : Obj I} {f : Hom I a b} → A [ A [ FMap Γ f o tmap a ] ≈ A [ tmap b o FMap (K I lim) f ] ] commute1 {i} {j} {f} = let open ≈-Reasoning (A) in begin FMap Γ f o tmap i ≈⟨⟩ FMap Γ f o ( proj i o e ) ≈⟨ assoc ⟩ ( FMap Γ f o proj i ) o e ≈⟨ {!!} ⟩ proj j o e ≈↑⟨ idR ⟩ (proj j o e ) o id1 A lim ≈⟨⟩ tmap j o FMap (K I lim) f ∎ limit-from : ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) → IProduct {c₁'} A (Obj I) p ai pi ) ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g ) ( Γ : Functor I A ) → ( lim p : Obj A ) ( e : Hom A lim p ) ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) → Limit I Γ lim ( limit-equalizer prod eqa Γ lim p e proj ) limit-from prod eqa Γ lim p e proj = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } where limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a lim limit1 a t = k (eqa e {!!} {!!} ) (product ( prod p (FObj Γ) proj ) (TMap t) ) {!!} t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} → A [ A [ TMap (limit-equalizer prod eqa Γ lim p e proj) i o limit1 a t ] ≈ TMap t i ] t0f=t1 = {!!} limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {f : Hom A a lim} → ({i : Obj I} → A [ A [ TMap (limit-equalizer prod eqa Γ lim p e proj) i o f ] ≈ TMap t i ]) → A [ limit1 a t ≈ f ] limit-uniqueness1 = {!!}