view record-ex.agda @ 291:c8e26650ddf9

limit preserving ...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 25 Sep 2013 18:07:58 +0900
parents 3249aaddc405
children d6a6dd305da2
line wrap: on
line source

module record-ex where

data _∨_  (A B : Set) : Set where
      or1 : A -> A ∨ B
      or2 : B -> A ∨ B

postulate A B C : Set
postulate a1 a2 a3 : A
postulate b1 b2 b3 : B

x : ( A ∨ B )
x = or1 a1
y : ( A ∨ B )
y = or2 b1

f : ( A ∨ B ) -> A
f (or1 a) = a
f (or2 b) = a1

record _∧_ (A B : Set) : Set where
       field
          and1 : A
          and2 : B

z : A ∧ B
z = record { and1 = a1 ; and2 = b2 }

xa : A
xa = _∧_.and1 z
xb : B
xb = _∧_.and2 z

open _∧_

ya : A
ya = and1 z

open  import  Relation.Binary.PropositionalEquality

data Nat : Set where
   zero : Nat
   suc  : Nat -> Nat

record Mod3 (m : Nat) : Set where
   field
      mod3 : (suc (suc (suc m ))) ≡ m
   n : Nat
   n = m

open Mod3 

Lemma1 :  ( x : Mod3 ( suc (suc (suc (suc zero))))) ( y : Mod3 ( suc zero ) ) -> n x  ≡ n y 
Lemma1 x y =  mod3 y