Mercurial > hg > Members > kono > Proof > category
view src/Polynominal.agda @ 1083:caba080b1ded
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 15 May 2021 11:33:07 +0900 |
parents | a59d7f0edeae |
children | 372ea20015e8 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Category open import CCC open import Level open import HomReasoning open import cat-utility open import Relation.Nullary open import Data.Empty open import Data.Product renaming ( <_,_> to ⟪_,_⟫ ) module Polynominal { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( C : CCC A ) where open CCC.CCC C open ≈-Reasoning A hiding (_∙_) _∙_ = _[_o_] A -- -- Polynominal (p.57) in Introduction to Higher order categorical logic -- -- Given object a₀ and a of a caterisian closed category A, how does one adjoin an interminate arraow x : a₀ → a to A? -- A[x] based on the `assumption' x, as was done in Section 2 (data φ). The formulas of A[x] are the objects of A and the -- proofs of A[x] are formed from the arrows of A and the new arrow x : a₀ → a by the appropriate ules of inference. -- -- Here, A is actualy A[x]. It contains x and all the arrow generated from x. -- If we can put constraints on rule i (sub : Hom A b c → Set), then A is strictly smaller than A[x], -- that is, a subscategory of A[x]. -- -- i : {b c : Obj A} {k : Hom A b c } → sub k → φ x k -- sub k is ¬ ( k ≈ x ), we cannot write this because b≡⊤ c≡a is forced -- -- this makes a few changes, but we don't care. -- from page. 51 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) data φ {a ⊤ : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁ ⊔ c₂ ⊔ ℓ) where i : {b c : Obj A} (k : Hom A b c ) → φ x k ii : φ x {⊤} {a} x iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c' ∧ c''} < f , g > iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ∙ g ) v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < π ∙ π , < π' ∙ π , π' > > -- genetate (a ∧ b) → c proof from proof b → c with assumption a -- from page. 51 k : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x∈a z ) → Hom A (a ∧ b) c k x∈a {k} (i _) = k ∙ π' k x∈a ii = π k x∈a (iii ψ χ ) = < k x∈a ψ , k x∈a χ > k x∈a (iv ψ χ ) = k x∈a ψ ∙ < π , k x∈a χ > k x∈a (v ψ ) = ( k x∈a ψ ∙ α ) * toφ : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → (z : Hom A b c ) → φ {a} x∈a z toφ {a} {⊤} {b} {c} x∈a z = i z -- The Polynominal arrow -- λ term in A -- -- arrow in A[x], equality in A[x] should be a modulo x, that is k x phi ≈ k x phi' -- the smallest equivalence relation -- -- if we use equality on f as in A, Poly is ovioously Hom c b of a Category. -- it is better to define A[x] as an extension of A as described before open import Data.Unit xnef : {a b c : Obj A } → ( x∈a : Hom A 1 a ) → {z : Hom A b c } → ( y : φ {a} x∈a z ) → Set c₂ xnef {a} {b} {c} x (i f) = ¬ ( x ≅ f) xnef {a} {1} x ii = Lift _ ⊤ xnef {a} {b} x (iii phi phi₁) = xnef x phi × xnef x phi₁ xnef {a} {b} x (iv phi phi₁) = xnef x phi × xnef x phi₁ xnef {a} {b} x (v phi) = xnef x phi record Poly (a c b : Obj A ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field x : Hom A 1 a -- λ x f : Hom A b c phi : φ x {b} {c} f -- construction of f nf : xnef x phi -- since we have A[x] now, we can proceed the proof on p.64 in some possible future -- -- Proposition 6.1 -- -- For every polynominal ψ(x) : b → c in an indeterminate x : 1 → a over a cartesian or cartesian closed -- category A there is a unique arrow f : a ∧ b → c in A such that f ∙ < x ∙ ○ b , id1 A b > ≈ ψ(x). record Functional-completeness {a b c : Obj A} ( p : Poly a c b ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where x = Poly.x p field fun : Hom A (a ∧ b) c fp : A [ fun ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p ] uniq : ( f : Hom A (a ∧ b) c) → A [ f ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p ] → A [ f ≈ fun ] -- ε form -- f ≡ λ (x ∈ a) → φ x , ∃ (f : b <= a) → f ∙ x ≈ φ x record Fc {a b : Obj A } ( φ : Poly a b 1 ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field sl : Hom A a b g : Hom A 1 (b <= a) g = ( sl ∙ π' ) * field isSelect : A [ ε ∙ < g , Poly.x φ > ≈ Poly.f φ ] isUnique : (f : Hom A 1 (b <= a) ) → A [ ε ∙ < f , Poly.x φ > ≈ Poly.f φ ] → A [ g ≈ f ] -- we should open IsCCC isCCC π-cong = IsCCC.π-cong isCCC *-cong = IsCCC.*-cong isCCC distr-* = IsCCC.distr-* isCCC e2 = IsCCC.e2 isCCC -- f ≈ g → k x {f} _ ≡ k x {g} _ Lambek p.60 -- if A is locally small, it is ≡-cong. -- case i i is π ∙ f ≈ π ∙ g -- we have (x y : Hom A 1 a) → x ≈ y (minimul equivalende assumption) in record Poly. this makes all k x ii case valid -- all other cases, arguments are reduced to f ∙ π' . ki : {a b c : Obj A} → (x : Hom A 1 a) → (f : Hom A b c ) → (fp : φ x {b} {c} f ) → xnef x fp → ¬ (f ≅ x) → A [ k x (i f) ≈ k x fp ] ki x f (i _) _ _ = refl-hom ki {a} x .x ii ne fx = ⊥-elim ( fx HE.refl ) ki x _ (iii {_} {_} {_} {f₁}{ f₂} fp₁ fp₂ ) ne fx = begin < f₁ , f₂ > ∙ π' ≈⟨ IsCCC.distr-π isCCC ⟩ < f₁ ∙ π' , f₂ ∙ π' > ≈⟨ π-cong (ki x f₁ fp₁ (proj₁ ne) {!!} ) (ki x f₂ fp₂ (proj₂ ne ) {!!} ) ⟩ k x (iii fp₁ fp₂ ) ∎ ki x _ (iv {_} {_} {_} {f₁} {f₂} fp fp₁) ne _ = begin (f₁ ∙ f₂ ) ∙ π' ≈↑⟨ assoc ⟩ f₁ ∙ ( f₂ ∙ π') ≈↑⟨ cdr (IsCCC.e3b isCCC) ⟩ f₁ ∙ ( π' ∙ < π , (f₂ ∙ π' ) >) ≈⟨ assoc ⟩ (f₁ ∙ π' ) ∙ < π , (f₂ ∙ π' ) > ≈⟨ resp (π-cong refl-hom (ki x _ fp₁ (proj₂ ne) {!!} ) ) (ki x _ fp (proj₁ ne) {!!}) ⟩ k x fp ∙ < π , k x fp₁ > ≈⟨⟩ k x (iv fp fp₁ ) ∎ ki x _ (v {_} {_} {_} {f} fp) ne fx = begin (f *) ∙ π' ≈⟨ distr-* ⟩ ( f ∙ < π' ∙ π , π' > ) * ≈↑⟨ *-cong (cdr (IsCCC.e3b isCCC)) ⟩ ( f ∙ ( π' ∙ < π ∙ π , < π' ∙ π , π' > > ) ) * ≈⟨ *-cong assoc ⟩ ( (f ∙ π') ∙ < π ∙ π , < π' ∙ π , π' > > ) * ≈⟨ *-cong ( car ( ki x _ fp ne {!!} )) ⟩ ( k x fp ∙ < π ∙ π , < π' ∙ π , π' > > ) * ≈⟨⟩ k x (v fp ) ∎ k-cong : {a b c : Obj A} → (f g : Poly a c b ) → A [ Poly.f f ≈ Poly.f g ] → A [ k (Poly.x f) (Poly.phi f) ≈ k (Poly.x g) (Poly.phi g) ] k-cong {a} {b} {c} f g f=f = begin k (Poly.x f) (Poly.phi f) ≈↑⟨ ki (Poly.x f) (Poly.f f) (Poly.phi f) (Poly.nf f) {!!} ⟩ Poly.f f ∙ π' ≈⟨ car f=f ⟩ Poly.f g ∙ π' ≈⟨ ki (Poly.x g) (Poly.f g) (Poly.phi g) (Poly.nf g) {!!} ⟩ k (Poly.x g) (Poly.phi g) ∎ -- proof in p.59 Lambek -- -- (ψ : Poly a c b) is basically λ x.ψ(x). To use x from outside as a ψ(x), apply x ψ will work. -- Instead of replacing x in Poly.phi ψ, we can use simple application with this fuctional completeness -- in the internal language of Topos. -- functional-completeness : {a b c : Obj A} ( p : Poly a c b ) → Functional-completeness p functional-completeness {a} {b} {c} p = record { fun = k (Poly.x p) (Poly.phi p) ; fp = fc0 (Poly.x p) (Poly.f p) (Poly.phi p) ; uniq = λ f eq → uniq (Poly.x p) (Poly.f p) (Poly.phi p) f (Poly.nf p) eq } where fc0 : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) → A [ k x phi ∙ < x ∙ ○ b , id1 A b > ≈ f ] fc0 {a} {b} {c} x f' phi with phi ... | i {_} {_} s = begin (s ∙ π') ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩ s ∙ (π' ∙ < ( x ∙ ○ b ) , id1 A b >) ≈⟨ cdr (IsCCC.e3b isCCC ) ⟩ s ∙ id1 A b ≈⟨ idR ⟩ s ∎ ... | ii = begin π ∙ < ( x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.e3a isCCC ⟩ x ∙ ○ b ≈↑⟨ cdr (e2 ) ⟩ x ∙ id1 A b ≈⟨ idR ⟩ x ∎ ... | iii {_} {_} {_} {f} {g} y z = begin < k x y , k x z > ∙ < (x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.distr-π isCCC ⟩ < k x y ∙ < (x ∙ ○ b ) , id1 A b > , k x z ∙ < (x ∙ ○ b ) , id1 A b > > ≈⟨ π-cong (fc0 x f y ) (fc0 x g z ) ⟩ < f , g > ≈⟨⟩ f' ∎ ... | iv {_} {_} {d} {f} {g} y z = begin (k x y ∙ < π , k x z >) ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩ k x y ∙ ( < π , k x z > ∙ < ( x ∙ ○ b ) , id1 A b > ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩ k x y ∙ ( < π ∙ < ( x ∙ ○ b ) , id1 A b > , k x z ∙ < ( x ∙ ○ b ) , id1 A b > > ) ≈⟨ cdr (π-cong (IsCCC.e3a isCCC) (fc0 x g z ) ) ⟩ k x y ∙ ( < x ∙ ○ b , g > ) ≈↑⟨ cdr (π-cong (cdr (e2)) refl-hom ) ⟩ k x y ∙ ( < x ∙ ( ○ d ∙ g ) , g > ) ≈⟨ cdr (π-cong assoc (sym idL)) ⟩ k x y ∙ ( < (x ∙ ○ d) ∙ g , id1 A d ∙ g > ) ≈↑⟨ cdr (IsCCC.distr-π isCCC) ⟩ k x y ∙ ( < x ∙ ○ d , id1 A d > ∙ g ) ≈⟨ assoc ⟩ (k x y ∙ < x ∙ ○ d , id1 A d > ) ∙ g ≈⟨ car (fc0 x f y ) ⟩ f ∙ g ∎ ... | v {_} {_} {_} {f} y = begin ( (k x y ∙ < π ∙ π , < π' ∙ π , π' > >) *) ∙ < x ∙ (○ b) , id1 A b > ≈⟨ IsCCC.distr-* isCCC ⟩ ( (k x y ∙ < π ∙ π , < π' ∙ π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) * ≈⟨ IsCCC.*-cong isCCC ( begin ( k x y ∙ < π ∙ π , < π' ∙ π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ≈↑⟨ assoc ⟩ k x y ∙ ( < π ∙ π , < π' ∙ π , π' > > ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩ k x y ∙ < (π ∙ π) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > , < π' ∙ π , π' > ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > > ≈⟨ cdr (π-cong (sym assoc) (IsCCC.distr-π isCCC )) ⟩ k x y ∙ < π ∙ (π ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) , < (π' ∙ π) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > , π' ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > > > ≈⟨ cdr ( π-cong (cdr (IsCCC.e3a isCCC))( π-cong (sym assoc) (IsCCC.e3b isCCC) )) ⟩ k x y ∙ < π ∙ ( < x ∙ ○ b , id1 A _ > ∙ π ) , < π' ∙ (π ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >) , π' > > ≈⟨ cdr ( π-cong refl-hom ( π-cong (cdr (IsCCC.e3a isCCC)) refl-hom )) ⟩ k x y ∙ < (π ∙ ( < x ∙ ○ b , id1 A _ > ∙ π ) ) , < π' ∙ (< x ∙ ○ b , id1 A _ > ∙ π ) , π' > > ≈⟨ cdr ( π-cong assoc (π-cong assoc refl-hom )) ⟩ k x y ∙ < (π ∙ < x ∙ ○ b , id1 A _ > ) ∙ π , < (π' ∙ < x ∙ ○ b , id1 A _ > ) ∙ π , π' > > ≈⟨ cdr (π-cong (car (IsCCC.e3a isCCC)) (π-cong (car (IsCCC.e3b isCCC)) refl-hom )) ⟩ k x y ∙ < ( (x ∙ ○ b ) ∙ π ) , < id1 A _ ∙ π , π' > > ≈⟨ cdr (π-cong (sym assoc) (π-cong idL refl-hom )) ⟩ k x y ∙ < x ∙ (○ b ∙ π ) , < π , π' > > ≈⟨ cdr (π-cong (cdr (e2)) (IsCCC.π-id isCCC) ) ⟩ k x y ∙ < x ∙ ○ _ , id1 A _ > ≈⟨ fc0 x f y ⟩ f ∎ ) ⟩ f * ∎ -- -- f ∙ < x ∙ ○ b , id1 A b > ≈ f → f ≈ k x (phi p) -- uniq : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) → xnef x phi → A [ f' ∙ < x ∙ ○ b , id1 A b > ≈ f ] → A [ f' ≈ k x phi ] uniq {a} {b} {c} x f phi f' ne fx=p = sym (begin k x phi ≈↑⟨ ki x f phi ne {!!} ⟩ k x {f} (i _) ≈↑⟨ car fx=p ⟩ k x {f' ∙ < x ∙ ○ b , id1 A b >} (i _) ≈⟨ trans-hom (sym assoc) (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π' f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii (i _) (i _) ) -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) ≈⟨ cdr (π-cong (ki x ( x ∙ ○ b) (iv ii (i _) ) {!!} {!!} ) refl-hom) ⟩ f' ∙ < k x {x ∙ ○ b} (iv ii (i _) ) , k x {id1 A b} (i _) > ≈⟨ refl-hom ⟩ f' ∙ < k x {x} ii ∙ < π , k x {○ b} (i _) > , k x {id1 A b} (i _) > -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' > , id1 A b ∙ π' > ) ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ f' ∙ < π ∙ < π , (○ b ∙ π' ) > , π' > ≈⟨ cdr (π-cong (IsCCC.e3a isCCC) refl-hom) ⟩ f' ∙ < π , π' > ≈⟨ cdr (IsCCC.π-id isCCC) ⟩ f' ∙ id1 A _ ≈⟨ idR ⟩ f' ∎ ) -- functional completeness ε form -- -- g : Hom A 1 (b <= a) fun : Hom A (a ∧ 1) c -- fun * ε ∙ < g ∙ π , π' > -- a -> d <= b <-> (a ∧ b ) -> d -- -- fun ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p -- (ε ∙ < g ∙ π , π' >) ∙ < x ∙ ○ b , id1 A b > ≈ Poly.f p -- could be simpler FC : {a b : Obj A} → (φ : Poly a b 1 ) → Fc {a} {b} φ FC {a} {b} φ = record { sl = k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ; isSelect = isSelect ; isUnique = uniq } where π-exchg = IsCCC.π-exchg isCCC fc0 : {b c : Obj A} (p : Poly b c 1) → A [ k (Poly.x p ) (Poly.phi p) ∙ < Poly.x p ∙ ○ 1 , id1 A 1 > ≈ Poly.f p ] fc0 p = Functional-completeness.fp (functional-completeness p) gg : A [ ( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ) ∙ Poly.x φ ≈ Poly.f φ ] gg = begin ( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ) ∙ Poly.x φ ≈⟨ trans-hom (sym assoc) (cdr (IsCCC.distr-π isCCC ) ) ⟩ k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ ∙ Poly.x φ , ○ a ∙ Poly.x φ > ≈⟨ cdr (π-cong idL e2 ) ⟩ k (Poly.x φ ) (Poly.phi φ) ∙ < Poly.x φ , ○ 1 > ≈⟨ cdr (π-cong (trans-hom (sym idR) (cdr e2) ) (sym e2) ) ⟩ k (Poly.x φ ) (Poly.phi φ) ∙ < Poly.x φ ∙ ○ 1 , id1 A 1 > ≈⟨ fc0 φ ⟩ Poly.f φ ∎ isSelect : A [ ε ∙ < ( ( k (Poly.x φ ) ( Poly.phi φ) ∙ < id1 A _ , ○ a > ) ∙ π' ) * , Poly.x φ > ≈ Poly.f φ ] isSelect = begin ε ∙ < ((k (Poly.x φ) (Poly.phi φ)∙ < id1 A _ , ○ a > ) ∙ π') * , Poly.x φ > ≈↑⟨ cdr (π-cong idR refl-hom ) ⟩ ε ∙ (< ((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ id1 A _ , Poly.x φ > ) ≈⟨ cdr (π-cong (cdr e2) refl-hom ) ⟩ ε ∙ (< ((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ ○ 1 , Poly.x φ > ) ≈↑⟨ cdr (π-cong (cdr e2) refl-hom ) ⟩ ε ∙ (< ((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ (○ a ∙ Poly.x φ) , Poly.x φ > ) ≈↑⟨ cdr (π-cong (sym assoc) idL ) ⟩ ε ∙ (< (((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ ○ a ) ∙ Poly.x φ , id1 A _ ∙ Poly.x φ > ) ≈↑⟨ cdr (IsCCC.distr-π isCCC) ⟩ ε ∙ ((< (((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ ○ a ) , id1 A _ > ) ∙ Poly.x φ ) ≈↑⟨ cdr (car (π-cong (cdr (IsCCC.e3a isCCC) ) refl-hom)) ⟩ ε ∙ ((< (((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ (π ∙ < ○ a , id1 A _ > )) , id1 A _ > ) ∙ Poly.x φ ) ≈⟨ cdr (car (π-cong assoc (sym (IsCCC.e3b isCCC)) )) ⟩ ε ∙ ((< ((((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ π ) ∙ < ○ a , id1 A _ > ) , (π' ∙ < ○ a , id1 A _ > ) > ) ∙ Poly.x φ ) ≈↑⟨ cdr (car (IsCCC.distr-π isCCC)) ⟩ ε ∙ ((< ((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ π , π' > ∙ < ○ a , id1 A _ > ) ∙ Poly.x φ ) ≈⟨ assoc ⟩ (ε ∙ (< ((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ π , π' > ∙ < ○ a , id1 A _ > ) ) ∙ Poly.x φ ≈⟨ car assoc ⟩ ((ε ∙ < ((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) * ) ∙ π , π' > ) ∙ < ○ a , id1 A _ > ) ∙ Poly.x φ ≈⟨ car (car (IsCCC.e4a isCCC)) ⟩ ((( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ) ∙ < ○ a , id1 A _ > ) ∙ Poly.x φ ≈↑⟨ car assoc ⟩ (( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ) ∙ (π' ∙ < ○ a , id1 A _ > ) ) ∙ Poly.x φ ≈⟨ car (cdr (IsCCC.e3b isCCC)) ⟩ (( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ) ∙ id1 A _ ) ∙ Poly.x φ ≈⟨ car idR ⟩ ( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ) ∙ Poly.x φ ≈⟨ gg ⟩ Poly.f φ ∎ uniq : (f : Hom A 1 (b <= a)) → A [ ε ∙ < f , Poly.x φ > ≈ Poly.f φ ] → A [ (( k (Poly.x φ) (Poly.phi φ) ∙ < id1 A _ , ○ a > )∙ π' ) * ≈ f ] uniq f eq = begin (( k (Poly.x φ ) (Poly.phi φ) ∙ < id1 A _ , ○ a > ) ∙ π' ) * ≈⟨ IsCCC.*-cong isCCC ( begin (k (Poly.x φ) (Poly.phi φ) ∙ < id1 A _ , ○ a >) ∙ π' ≈↑⟨ assoc ⟩ k (Poly.x φ) (Poly.phi φ) ∙ (< id1 A _ , ○ a > ∙ π') ≈⟨ car ( sym (Functional-completeness.uniq (functional-completeness φ) _ ( begin ((ε ∙ < f ∙ π , π' >) ∙ < π' , π >) ∙ < Poly.x φ ∙ ○ 1 , id1 A 1 > ≈↑⟨ assoc ⟩ (ε ∙ < f ∙ π , π' >) ∙ ( < π' , π > ∙ < Poly.x φ ∙ ○ 1 , id1 A 1 > ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩ (ε ∙ < f ∙ π , π' >) ∙ < π' ∙ < Poly.x φ ∙ ○ 1 , id1 A 1 > , π ∙ < Poly.x φ ∙ ○ 1 , id1 A 1 > > ≈⟨ cdr (π-cong (IsCCC.e3b isCCC) (IsCCC.e3a isCCC)) ⟩ (ε ∙ < f ∙ π , π' >) ∙ < id1 A 1 , Poly.x φ ∙ ○ 1 > ≈↑⟨ assoc ⟩ ε ∙ ( < f ∙ π , π' > ∙ < id1 A 1 , Poly.x φ ∙ ○ 1 > ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩ ε ∙ ( < (f ∙ π ) ∙ < id1 A 1 , Poly.x φ ∙ ○ 1 > , π' ∙ < id1 A 1 , Poly.x φ ∙ ○ 1 > > ) ≈⟨ cdr (π-cong (sym assoc) (IsCCC.e3b isCCC)) ⟩ ε ∙ ( < f ∙ (π ∙ < id1 A 1 , Poly.x φ ∙ ○ 1 > ) , Poly.x φ ∙ ○ 1 > ) ≈⟨ cdr (π-cong (cdr (IsCCC.e3a isCCC)) (cdr (trans-hom e2 (sym e2)))) ⟩ ε ∙ ( < f ∙ id1 A 1 , Poly.x φ ∙ id1 A 1 > ) ≈⟨ cdr (π-cong idR idR ) ⟩ ε ∙ < f , Poly.x φ > ≈⟨ eq ⟩ Poly.f φ ∎ ))) ⟩ ((ε ∙ < f ∙ π , π' > ) ∙ < π' , π > ) ∙ ( < id1 A _ , ○ a > ∙ π' ) ≈↑⟨ assoc ⟩ (ε ∙ < f ∙ π , π' > ) ∙ (< π' , π > ∙ ( < id1 A _ , ○ a > ∙ π' ) ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩ (ε ∙ < f ∙ π , π' > ) ∙ (< π' ∙ ( < id1 A _ , ○ a > ∙ π' ) , π ∙ ( < id1 A _ , ○ a > ∙ π' ) > ) ≈⟨ cdr (π-cong assoc assoc ) ⟩ (ε ∙ < f ∙ π , π' > ) ∙ (< (π' ∙ < id1 A _ , ○ a > ) ∙ π' , (π ∙ < id1 A _ , ○ a > ) ∙ π' > ) ≈⟨ cdr (π-cong (car (IsCCC.e3b isCCC)) (car (IsCCC.e3a isCCC) )) ⟩ (ε ∙ < f ∙ π , π' > ) ∙ < ○ a ∙ π' , id1 A _ ∙ π' > ≈⟨ cdr (π-cong (trans-hom e2 (sym e2) ) idL ) ⟩ (ε ∙ < f ∙ π , π' > ) ∙ < π , π' > ≈⟨ cdr (IsCCC.π-id isCCC) ⟩ (ε ∙ < f ∙ π , π' > ) ∙ id1 A (1 ∧ a) ≈⟨ idR ⟩ ε ∙ < f ∙ π , π' > ∎ ) ⟩ ( ε ∙ < A [ f o π ] , π' > ) * ≈⟨ IsCCC.e4b isCCC ⟩ f ∎ -- end