Mercurial > hg > Members > kono > Proof > category
view CCCGraph1.agda @ 870:d925b07aa8b5
... dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 Apr 2020 17:48:24 +0900 |
parents | 65b7edb4db13 |
children | bfe0215593b9 d8ed393d7878 |
line wrap: on
line source
open import Level open import Category module CCCgraph1 where open import HomReasoning open import cat-utility open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import CCC open import graph module ccc-from-graph {c₁ c₂ : Level} (G : Graph {c₁} {c₂} ) where open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Binary.Core open Graph data Objs : Set (c₁ ⊔ c₂) where atom : (vertex G) → Objs ⊤ : Objs _∧_ : Objs → Objs → Objs _<=_ : Objs → Objs → Objs data Arrow : Objs → Objs → Set (c₁ ⊔ c₂) where --- case i arrow : {a b : vertex G} → (edge G) a b → Arrow (atom a) (atom b) π : {a b : Objs } → Arrow ( a ∧ b ) a π' : {a b : Objs } → Arrow ( a ∧ b ) b ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a _* : {a b c : Objs } → Arrow (c ∧ b ) a → Arrow c ( a <= b ) --- case v data Arrows : (b c : Objs ) → Set ( c₁ ⊔ c₂ ) where id : ( a : Objs ) → Arrows a a --- case i ○ : ( a : Objs ) → Arrows a ⊤ --- case i <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b) --- case iii iv : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c -- cas iv eval : {a b : Objs } (f : Arrows a b ) → Arrows a b eval (id a) = id a eval (○ a) = ○ a eval < f , f₁ > = < eval f , eval f₁ > eval (iv f (id a)) = iv f (id a) eval (iv f (○ a)) = iv f (○ a) eval (iv π < g , h >) = eval g eval (iv π' < g , h >) = eval h eval (iv ε < g , h >) = iv ε < eval g , eval h > eval (iv (f *) < g , h >) = iv (f *) < eval g , eval h > eval (iv f (iv g h)) with eval (iv g h) eval (iv f (iv g h)) | id a = iv f (id a) eval (iv f (iv g h)) | ○ a = iv f (○ a) eval (iv π (iv g h)) | < t , t₁ > = t eval (iv π' (iv g h)) | < t , t₁ > = t₁ eval (iv ε (iv g h)) | < t , t₁ > = iv ε < t , t₁ > eval (iv (f *) (iv g h)) | < t , t₁ > = iv (f *) < t , t₁ > eval (iv f (iv g h)) | iv f1 t = iv f (iv f1 t) pi : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a b pi (id .(_ ∧ _)) = iv π (id _) pi < x , x₁ > = x pi (iv f x) = iv π (iv f x) pi' : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a c pi' (id .(_ ∧ _)) = iv π' (id _) pi' < x , x₁ > = x₁ pi' (iv f x) = iv π' (iv f x) refl-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → f ≡ f1 refl-<l> refl = refl refl-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → g ≡ g1 refl-<r> refl = refl _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c id a ・ g = eval g ○ a ・ g = ○ _ < f , g > ・ h = < f ・ h , g ・ h > iv f (id _) ・ h = eval ( iv f h ) iv π < g , g₁ > ・ h = g ・ h iv π' < g , g₁ > ・ h = g₁ ・ h iv ε < g , g₁ > ・ h = iv ε < g ・ h , g₁ ・ h > iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > iv f ( (○ a)) ・ g = iv f ( ○ _ ) iv x y ・ id a = eval (iv x y) iv f (iv f₁ g) ・ h with eval (iv f₁ g ・ h ) (iv f (iv f₁ g) ・ h) | id a = iv f (id a) (iv f (iv f₁ g) ・ h) | ○ a = iv f (○ a) (iv π (iv f₁ g) ・ h) | < t , t₁ > = t (iv π' (iv f₁ g) ・ h) | < t , t₁ > = t₁ (iv ε (iv f₁ g) ・ h) | < t , t₁ > = iv ε < t , t₁ > (iv (f *) (iv f₁ g) ・ h) | < t , t₁ > = iv (f *) < t , t₁ > (iv f (iv f₁ g) ・ h) | iv f₂ t = iv f (iv f₂ t) _==_ : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂) _==_ {a} {b} x y = eval x ≡ eval y identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f identityR {a} {.a} {id a} = refl identityR {a} {⊤} {○ a} = refl identityR {_} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) identityR {_} {_} {iv f (id a)} = refl identityR {_} {_} {iv f (○ a)} = refl identityR {_} {_} {iv π < g , g₁ >} = identityR {_} {_} {g} identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) identityR {_} {_} {iv f (iv g h)} = {!!} open import Data.Empty open import Relation.Nullary open import Relation.Binary.HeterogeneousEquality as HE using (_≅_;refl) std-iv : {a b c d : Objs} (x : Arrow c d) (y : Arrow b c ) (f : Arrows a b) → ( {b1 b2 : Objs } → {g : Arrows a b1 } {h : Arrows a b2 } → ¬ (eval f) ≅ < g , h > ) → eval (iv x ( iv y f ) ) ≡ iv x ( eval (iv y f ) ) std-iv x y (id a) _ = refl std-iv x y (○ a) _ = refl std-iv x y < f , f₁ > ne = ⊥-elim (ne refl) std-iv x y (iv z f) ne with eval (iv z f) std-iv x y (iv z f) ne | id a = refl std-iv x y (iv z f) ne | ○ a = refl std-iv x y (iv z f) ne | < t , t₁ > = ⊥-elim (ne refl) std-iv (arrow x) _ (iv z f) ne | iv z1 t = refl std-iv π y (iv z f) ne | iv z1 t = refl std-iv π' y (iv z f) ne | iv z1 t = refl std-iv ε y (iv z f) ne | iv z1 t = refl std-iv (x *) y (iv z f) ne | iv z1 t = refl std-iv' : {a b c : Objs} (y : Arrow b c ) (f : Arrows a b) → ( {b1 b2 : Objs } → {g : Arrows a b1 } {h : Arrows a b2 } → ¬ (eval f) ≅ < g , h > ) → eval ( iv y f ) ≡ iv y (eval f ) std-iv' y (id a) ne = refl std-iv' y (○ a) ne = refl std-iv' y < f , f₁ > ne = ⊥-elim (ne refl) std-iv' y (iv f z) ne with eval (iv f z) std-iv' y (iv f z) ne | id a = refl std-iv' y (iv f z) ne | ○ a = refl std-iv' y (iv f z) ne | < t , t₁ > = ⊥-elim (ne refl) std-iv' (arrow x) (iv f z) ne | iv f₁ t = refl std-iv' π (iv f z) ne | iv f₁ t = refl std-iv' π' (iv f z) ne | iv f₁ t = refl std-iv' ε (iv f z) ne | iv f₁ t = refl std-iv' (y *) (iv f z) ne | iv f₁ t = refl idem-eval : {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f idem-eval (id a) = refl idem-eval (○ a) = refl idem-eval < f , f₁ > = cong₂ ( λ j k → < j , k > ) (idem-eval f) (idem-eval f₁) idem-eval (iv f (id a)) = refl idem-eval (iv f (○ a)) = refl idem-eval (iv π < g , g₁ >) = idem-eval g idem-eval (iv π' < g , g₁ >) = idem-eval g₁ idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁) idem-eval (iv (x *) < f , f₁ >) = cong₂ ( λ j k → iv (x *) < j , k > ) (idem-eval f) (idem-eval f₁) idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) | inspect eval (iv g h) idem-eval (iv f (iv g h)) | id a | m | _ = refl idem-eval (iv f (iv g h)) | ○ a | m | _ = refl idem-eval (iv π (iv g h)) | < t , t₁ > | m | _ = refl-<l> m idem-eval (iv π' (iv g h)) | < t , t₁ > | m | _ = refl-<r> m idem-eval (iv ε (iv g h)) | < t , t₁ > | m | _ = cong ( λ k → iv ε k ) m idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m | _ = cong ( λ k → iv (f *) k ) m idem-eval (iv f (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} -- trans lemma (cong ( λ k → iv f k ) m ) where -- lemma : eval (iv f (iv f₁ t)) ≡ iv f (eval (iv f₁ t)) -- lemma = std-iv f f₁ t {!!} assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g) assoc-iv x (id a) g = {!!} assoc-iv x (○ a) g = refl assoc-iv π < f , f₁ > g = refl assoc-iv π' < f , f₁ > g = refl assoc-iv ε < f , f₁ > g = refl assoc-iv (x *) < f , f₁ > g = refl assoc-iv x (iv f g) h = begin eval (iv x (iv f g ・ h)) ≡⟨ {!!} ⟩ eval (iv x (iv f g) ・ h) ∎ where open ≡-Reasoning ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g ==←≡ eq = cong (λ k → eval k ) eq PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL = record { Obj = Objs; Hom = λ a b → Arrows a b ; _o_ = λ{a} {b} {c} x y → x ・ y ; _≈_ = λ x y → x == y ; Id = λ{a} → id a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ {a b f} → identityL {a} {b} {f} ; identityR = λ {a b f} → identityR {a} {b} {f} ; o-resp-≈ = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → associative f g h } } where identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) == f identityL {_} {_} {id a} = refl identityL {_} {_} {○ a} = refl identityL {a} {b} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityL {_} {_} {f}) (identityL {_} {_} {f₁}) identityL {_} {_} {iv f f₁} = {!!} associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) == ((f ・ g) ・ h) associative (id a) g h = {!!} associative (○ a) g h = refl associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) associative {a} (iv π < f , f1 > ) g h = associative f g h associative {a} (iv π' < f , f1 > ) g h = associative f1 g h associative {a} (iv ε < f , f1 > ) g h = cong ( λ k → iv ε k ) ( associative < f , f1 > g h ) associative {a} (iv (x *) < f , f1 > ) g h = cong ( λ k → iv (x *) k ) ( associative < f , f1 > g h ) associative {a} (iv x (id _)) g h = begin eval (iv x (id _) ・ (g ・ h)) ≡⟨ {!!} ⟩ eval (iv x (g ・ h)) ≡⟨ assoc-iv x g h ⟩ eval (iv x g ・ h) ≡⟨ {!!} ⟩ eval ((iv x (id _) ・ g) ・ h) ∎ where open ≡-Reasoning associative {a} (iv x (○ _)) g h = refl associative {a} (iv x (iv y f)) g h = begin eval (iv x (iv y f) ・ (g ・ h)) ≡⟨ sym (assoc-iv x (iv y f) ( g ・ h)) ⟩ eval (iv x ((iv y f) ・ (g ・ h))) ≡⟨ {!!} ⟩ eval ((iv x (iv y f) ・ g) ・ h) ∎ where open ≡-Reasoning -- cong ( λ k → iv x k ) (associative f g h) o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f == g → h == i → (h ・ f) == (i ・ g) o-resp-≈ f=g h=i = {!!}