Mercurial > hg > Members > kono > Proof > category
view em-category.agda @ 107:da14b7f03ff8
no yellow. ready to define category
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2013 20:07:09 +0900 |
parents | 4dec85377dbc |
children | e763efd30868 |
line wrap: on
line source
-- -- -- -- -- -- -- -- -- Monad to Eilenberg-Moore Category -- defines U^T and F^T as a resolution of Monad -- checks Adjointness -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> -- -- -- -- -- -- -- -- -- Monad -- Category A -- A = Category -- Functor T : A → A --T(a) = t(a) --T(f) = tf(f) open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility open import Category.Cat module em-category { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { M : Monad A T η μ } where -- -- Hom in Eilenberg-Moore Category -- open Functor open NTrans record IsEMAlgebra (a : Obj A) (φ : Hom A (FObj T a) a ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field identity : A [ A [ φ o TMap η a ] ≈ id1 A a ] eval : A [ A [ φ o TMap μ a ] ≈ A [ φ o FMap T φ ] ] open IsEMAlgebra record EMAlgebra (a : Obj A) (φ : Hom A (FObj T a) a ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where obj : Obj A obj = a phi : Hom A (FObj T a) a phi = φ field isEMAlbgebra : IsEMAlgebra a φ open EMAlgebra data EMObj {a : Obj A} {φ : Hom A (FObj T a) a } : Set ( c₁ ⊔ c₂ ⊔ ℓ) where emObj : (EMAlgebra a φ) -> EMObj {a} {φ} emobj : {a : Obj A} -> {φ : Hom A (FObj T a) a } -> EMObj {a} {φ} -> Obj A emobj (emObj isAlgebra) = obj isAlgebra emphi : {a : Obj A} -> {φ : Hom A (FObj T a) a } -> EMObj {a} {φ} -> Hom A (FObj T a) a emphi (emObj isAlgebra) = phi isAlgebra record IsEMHom {x y : Obj A} {φ : Hom A (FObj T x) x } {φ' : Hom A (FObj T y) y } (a : EMObj {x} {φ} ) (b : EMObj {y} {φ'} ) (α : Hom A x y) : Set ℓ where field homomorphism : A [ A [ φ' o FMap T α ] ≈ A [ α o φ ] ] open IsEMHom record Eilenberg-Moore-Hom {x y : Obj A } {φ : Hom A (FObj T x) x } {φ' : Hom A (FObj T y) y } (a : EMObj {x} {φ}) (b : EMObj {y} {φ'}) {α : Hom A x y} : Set (c₁ ⊔ c₂ ⊔ ℓ) where EMap : Hom A x y EMap = α field isEMHom : IsEMHom a b α open Eilenberg-Moore-Hom EMHom : {x y : Obj A} {φ : Hom A (FObj T x) x } {φ' : Hom A (FObj T y) y } {α : Hom A x y } (a : EMObj {x} {φ} ) (b : EMObj {y} {φ'} ) -> Set (c₁ ⊔ c₂ ⊔ ℓ) EMHom {x} {y} {φ} {φ'} {α} a b = Eilenberg-Moore-Hom {x} {y} {φ} {φ'} a b {α} Lemma-EM1 : {x : Obj A} {φ : Hom A (FObj T x) x} (a : EMObj {x} {φ}) -> A [ A [ φ o FMap T (id1 A x) ] ≈ A [ (id1 A x) o φ ] ] Lemma-EM1 {x} {φ} (emObj isAlgebra ) = let open ≈-Reasoning (A) in begin φ o FMap T (id1 A x) ≈⟨ cdr ( IsFunctor.identity (isFunctor T) ) ⟩ φ o (id1 A (FObj T x)) ≈⟨ idR ⟩ φ ≈⟨ sym idL ⟩ (id1 A x) o φ ∎ EM-id : {x : Obj A} {φ : Hom A (FObj T x) x} {a : EMObj {x} {φ} } -> EMHom a a EM-id {x} {φ} {a = a} = record { isEMHom = record { homomorphism = Lemma-EM1 {x} {φ} a } } open import Relation.Binary.Core Lemma-EM2 : {x y z : Obj A} {φ : Hom A (FObj T x) x} {φ' : Hom A (FObj T y) y} {φ'' : Hom A (FObj T z) z} {α : Hom A x y} {α' : Hom A y z} (a : EMObj {x} {φ} ) (b : EMObj {y} {φ'} ) (c : EMObj {z} {φ''} ) (g : EMHom {y} {z} {φ'} {φ''} {α'} b c ) (f : EMHom {x} {y} {φ} {φ'} {α} a b) -> A [ A [ φ'' o FMap T (A [ (EMap g) o (EMap f) ] ) ] ≈ A [ (A [ (EMap g) o (EMap f) ]) o φ ] ] Lemma-EM2 {_} {_} {_} {φ} {φ'} {φ''} _ _ _ g f = let open ≈-Reasoning (A) in begin φ'' o FMap T ((EMap g) o (EMap f)) ≈⟨ cdr (distr T) ⟩ φ'' o ( FMap T (EMap g) o FMap T (EMap f) ) ≈⟨ assoc ⟩ ( φ'' o FMap T (EMap g)) o FMap T (EMap f) ≈⟨ car (IsEMHom.homomorphism (isEMHom g)) ⟩ ( EMap g o φ') o FMap T (EMap f) ≈⟨ sym assoc ⟩ EMap g o (φ' o FMap T (EMap f) ) ≈⟨ cdr (IsEMHom.homomorphism (isEMHom f)) ⟩ EMap g o (EMap f o φ) ≈⟨ assoc ⟩ ( (EMap g) o (EMap f) ) o φ ∎ _≗_ : { a : EMObj } { b : EMObj } (f g : EMHom a b ) -> Set ℓ _≗_ f g = A [ EMap f ≈ EMap g ] _∙_ : { a b c : EMObj } → ( EMHom b c) → (EMHom a b) → EMHom a c _∙_ {a} {b} {c} g f = record { isEMHom = record { homomorphism = Lemma-EM2 a b c g f } } isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id isEilenberg-MooreCategory = record { isEquivalence = isEquivalence ; identityL = KidL ; identityR = KidR ; o-resp-≈ = Ko-resp ; associative = Kassoc } where open ≈-Reasoning (A) isEquivalence : { a b : EMObj } -> IsEquivalence {_} {_} {EMHom a b} _≗_ isEquivalence {C} {D} = -- this is the same function as A's equivalence but has different types record { refl = refl-hom ; sym = sym ; trans = trans-hom } KidL : {C D : EMObj} -> {f : EMHom C D} → (EM-id ∙ f) ≗ f KidL {_} {_} {f} = {!!} -- Lemma7 (EMap f) KidR : {C D : EMObj} -> {f : EMHom C D} → (f ∙ EM-id) ≗ f KidR {_} {_} {f} = {!!} -- Lemma8 (EMap f) Ko-resp : {a b c : EMObj} -> {f g : EMHom a b } → {h i : EMHom b c } → f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) Ko-resp {a} {b} {c} {f} {g} {h} {i} eq-fg eq-hi = {!!} -- Lemma10 {a} {b} {c} (EMap f) (EMap g) (EMap h) (EMap i) eq-fg eq-hi Kassoc : {a b c d : EMObj} -> {f : EMHom c d } → {g : EMHom b c } → {h : EMHom a b } → (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) Kassoc {_} {_} {_} {_} {f} {g} {h} = {!!} -- Lemma9 (EMap f) (EMap g) (EMap h) Eilenberg-MooreCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ Eilenberg-MooreCategory = record { Obj = EMObj ; Hom = EMHom ; _o_ = _∙_ ; _≈_ = _≗_ ; Id = EM-id ; isCategory = isEilenberg-MooreCategory } -- -- Resolution -- T = U_T U_F -- nat-ε -- nat-η -- -- -- -- U_T : Functor Eilenberg-MooreCategory A -- U_T = record { -- FObj = FObj T -- ; FMap = ufmap -- ; isFunctor = record -- { ≈-cong = ≈-cong -- ; identity = identity -- ; distr = distr1 -- } -- } where -- identity : {a : EMObj} → A [ ufmap (EM-id {a}) ≈ id1 A (FObj T a) ] -- identity {a} = let open ≈-Reasoning (A) in -- begin -- TMap μ (a) o FMap T (TMap η a) -- ≈⟨ IsMonad.unity2 (isMonad M) ⟩ -- id1 A (FObj T a) -- ∎ -- ≈-cong : {a b : EMObj} {f g : EMHom a b} → A [ EMap f ≈ EMap g ] → A [ ufmap f ≈ ufmap g ] -- ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in -- begin -- TMap μ (b) o FMap T (EMap f) -- ≈⟨ cdr (fcong T f≈g) ⟩ -- TMap μ (b) o FMap T (EMap g) -- ∎ -- distr1 : {a b c : EMObj} {f : EMHom a b} {g : EMHom b c} → A [ ufmap (g ∙ f) ≈ (A [ ufmap g o ufmap f ] )] -- distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- begin -- ufmap (g ∙ f) -- ≈⟨⟩ -- ufmap g o ufmap f -- ∎ -- -- open MResolution -- -- Resolution_T : MResolution A Eilenberg-MooreCategory T U_T F_T {nat-η} {nat-ε} {nat-μ} Adj_T -- Resolution_T = record { -- T=UF = Lemma11; -- μ=UεF = Lemma12 -- } -- -- -- end