view src/Polynominal.agda @ 1059:e0819260ba18

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 20 Apr 2021 15:59:28 +0900
parents 79e7e0367189
children 2458af98786a
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}

open import Category
open import CCC
open import Level
open import HomReasoning 
open import cat-utility

module Polynominal { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( C : CCC A )   where

  open CCC.CCC C
  open ≈-Reasoning A hiding (_∙_)

  _∙_ = _[_o_] A

  --
  --   Polynominal (p.57) in Introduction to Higher order categorical logic
  --
  --   Given object a₀ and a of a caterisian closed category A, how does one adjoin an interminate arraow x : a₀ → a to A?
  --   A[x] based on the `assumption' x, as was done in Section 2 (data φ). The formulas of A[x] are the objects of A and the
  --   proofs of A[x] are formed from the arrows of A and the new arrow x :  a₀ → a by the appropriate ules of inference.
  --
  -- Here, A is actualy A[x]. It contains x and all the arrow generated from x.
  -- If we can put constraints on rule i (sub : Hom A b c → Set), then A is strictly smaller than A[x],
  -- that is, a subscategory of A[x].
  --
  --   i   : {b c : Obj A} {k : Hom A b c } → sub k  → φ x k
  --
  -- this makes a few changes, but we don't care.
  -- from page. 51
  --
  data  φ  {a ⊤ : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁  ⊔  c₂ ⊔ ℓ) where
     i   : {b c : Obj A} {k : Hom A b c } → φ x k   
     ii  : φ x {⊤} {a} x
     iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c'  ∧ c''} < f , g > 
     iv  : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ∙ g )
     v   : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' }  (ψ : φ x f )  → φ x {b} {c'' <= c'} ( f * )
     φ-cong   : {b c : Obj A} {k k' : Hom A b c } → A [ k ≈ k' ] → φ x k  → φ x k'
  
  α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) )
  α = < π  ∙ π   , < π'  ∙ π  , π'  > >
  
  -- genetate (a ∧ b) → c proof from  proof b →  c with assumption a
  -- from page. 51
  
  k : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → {z : Hom A b c } → ( y  : φ {a} x∈a z ) → Hom A (a ∧ b) c
  k x∈a {k} i = k ∙ π'
  k x∈a ii = π
  k x∈a (iii ψ χ ) = < k x∈a ψ  , k x∈a χ  >
  k x∈a (iv ψ χ ) = k x∈a ψ  ∙ < π , k x∈a χ  >
  k x∈a (v ψ ) = ( k x∈a ψ  ∙ α ) *
  k x∈a (φ-cong  eq ψ) = k x∈a  ψ

  toφ : {a ⊤ b c : Obj A } → ( x∈a : Hom A ⊤ a ) → (z : Hom A b c ) → φ {a} x∈a z  
  toφ {a} {⊤} {b} {c} x∈a z = i

  -- arrow in A[x], equality in A[x] should be a modulo x, that is  k x phi ≈ k x phi'
  -- the smallest equivalence relation
  --
  -- if we use equality on f as in A, Poly is ovioously Hom c b of a Category.
  -- it is better to define A[x] as an extension of A as described before

  record Poly (a c b : Obj A )  : Set (c₁ ⊔ c₂ ⊔ ℓ)  where
    field
       x :  Hom A 1 a
       f :  Hom A b c
       phi  :  φ x {b} {c} f 

  --
  --  Proposition 6.1
  --
  --  For every polynominal ψ(x) : b → c in an indeterminate x : 1 → a over a cartesian or cartesian closed
  --  category A there is a unique arrow f : a ∧ b → c in A such that f ∙ < x ∙ ○ b , id1 A b > ≈ ψ(x).
  --
  --  equality assumption in uniq should be modulo-x, k x phi ≈ k x phi'

  record Functional-completeness {a b c : Obj A} ( p : Poly a c b ) : Set  (c₁ ⊔ c₂ ⊔ ℓ) where
    x = Poly.x p
    field 
      fun  : Hom A (a ∧ b) c
      fp   : A [  fun ∙ <  x ∙ ○ b   , id1 A b  >  ≈ Poly.f p  ]
      uniq : ( f : Hom A (a ∧ b) c) → A [ f ∙ < x ∙ ○ b   , id1 A b  >  ≈ Poly.f p ] 
         → A [ f  ≈ fun  ]

  -- f ≡ λ (x ∈ a) → φ x , ∃ (f : b <= a) →  f ∙ x ≈  φ x  
  record Fc {a b : Obj A } ( φ :  Poly a b 1 ) 
         :  Set ( suc c₁  ⊔  suc c₂ ⊔ suc ℓ ) where
    field
      sl :  Hom A a b 
    g :  Hom A 1 (b <= a) 
    g  = (A [ sl  o π' ]  ) *
    field
      isSelect : A [  A [ ε  o < g  , Poly.x φ  > ]  ≈  Poly.f φ  ]
      isUnique : (f : Hom A 1 (b <= a) )  → A [  A [ ε o < f , Poly.x φ  > ]  ≈  Poly.f φ  ]
        →  A [ g   ≈ f ]

  π-cong = IsCCC.π-cong isCCC
  *-cong = IsCCC.*-cong isCCC
  distr-* = IsCCC.distr-* isCCC
  e2 = IsCCC.e2 isCCC

  -- proof in p.59 Lambek
  functional-completeness : {a b c : Obj A} ( p : Poly a c b ) → Functional-completeness p 
  functional-completeness {a} {b} {c} p = record {
         fun = k (Poly.x p) (Poly.phi p)
       ; fp = fc0 (Poly.x p) (Poly.f p) (Poly.phi p)
       ; uniq = λ f eq  → uniq (Poly.x p) (Poly.f p) (Poly.phi p) f eq
     } where 
        fc0 : {a b c : Obj A}  → (x :  Hom A 1 a) (f :  Hom A b c) (phi  :  φ x {b} {c} f )
           → A [  k x phi ∙ <  x ∙ ○ b  , id1 A b >  ≈ f ]
        fc0 {a} {b} {c} x f' phi with phi
        ... | i {_} {_} {s} = begin
             (s ∙ π') ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩
             s ∙ (π' ∙ < ( x ∙ ○ b ) , id1 A b >) ≈⟨ cdr (IsCCC.e3b isCCC ) ⟩
             s ∙ id1 A b ≈⟨ idR ⟩
             s ∎ 
        ... | ii = begin
             π ∙ < ( x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.e3a isCCC ⟩
             x ∙ ○ b  ≈↑⟨ cdr (e2 ) ⟩
             x ∙ id1 A b  ≈⟨ idR ⟩
             x ∎  
        ... | iii {_} {_} {_} {f} {g} y z  = begin
             < k x y , k x z > ∙ < (x ∙ ○ b ) , id1 A b > ≈⟨ IsCCC.distr-π isCCC  ⟩
             < k x y ∙ < (x ∙ ○ b ) , id1 A b > , k x z ∙ < (x ∙ ○ b ) , id1 A b > >
                 ≈⟨ π-cong (fc0 x  f y ) (fc0 x g z ) ⟩
             < f , g > ≈⟨⟩
             f'  ∎  
        ... | iv {_} {_} {d} {f} {g} y z  = begin
             (k x y ∙ < π , k x z >) ∙ < ( x ∙ ○ b ) , id1 A b > ≈↑⟨ assoc ⟩
             k x y ∙ ( < π , k x z > ∙ < ( x ∙ ○ b ) , id1 A b > ) ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩
             k x y ∙ ( < π  ∙ < ( x ∙ ○ b ) , id1 A b > ,  k x z  ∙ < ( x ∙ ○ b ) , id1 A b > > )
                 ≈⟨ cdr (π-cong (IsCCC.e3a isCCC) (fc0 x g z ) ) ⟩
             k x y ∙ ( < x ∙ ○ b  ,  g > ) ≈↑⟨ cdr (π-cong (cdr (e2)) refl-hom ) ⟩
             k x y ∙ ( < x ∙ ( ○ d ∙ g ) ,  g > ) ≈⟨  cdr (π-cong assoc (sym idL)) ⟩
             k x y ∙ ( < (x ∙ ○ d) ∙ g  , id1 A d ∙ g > ) ≈↑⟨ cdr (IsCCC.distr-π isCCC) ⟩
             k x y ∙ ( < x ∙ ○ d ,  id1 A d > ∙ g ) ≈⟨ assoc ⟩
             (k x y ∙  < x ∙ ○ d ,  id1 A d > ) ∙ g  ≈⟨ car (fc0 x f y ) ⟩
             f ∙ g  ∎  
        ... | v {_} {_} {_} {f} y = begin
            ( (k x y ∙ < π ∙ π , <  π' ∙  π , π' > >) *) ∙ < x ∙ (○ b) , id1 A b > ≈⟨ IsCCC.distr-* isCCC ⟩
            ( (k x y ∙ < π ∙ π , <  π' ∙  π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) * ≈⟨  IsCCC.*-cong isCCC ( begin
             ( k x y ∙ < π ∙ π , <  π' ∙  π , π' > >) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >   ≈↑⟨ assoc ⟩
              k x y ∙ ( < π ∙ π , <  π' ∙  π , π' > > ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > )   ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩
              k x y ∙ < (π ∙ π) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >  , <  π' ∙  π , π' > ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >  >
                  ≈⟨ cdr (π-cong (sym assoc) (IsCCC.distr-π isCCC )) ⟩
              k x y ∙ < π ∙ (π ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > ) ,
                <  (π' ∙  π) ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > , π'  ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' > > >
                    ≈⟨ cdr ( π-cong (cdr (IsCCC.e3a isCCC))( π-cong (sym assoc) (IsCCC.e3b isCCC) )) ⟩
              k x y ∙ < π ∙ ( < x ∙ ○ b , id1 A _ > ∙ π  ) , <  π' ∙  (π ∙ < < x ∙ ○ b , id1 A _ > ∙ π , π' >) ,  π'  > >
                ≈⟨  cdr ( π-cong refl-hom (  π-cong (cdr (IsCCC.e3a isCCC)) refl-hom )) ⟩
              k x y ∙ < (π ∙ ( < x ∙ ○ b , id1 A _ > ∙ π ) ) , <  π' ∙  (< x ∙ ○ b , id1 A _ > ∙ π ) , π' > >
                ≈⟨ cdr ( π-cong  assoc (π-cong  assoc refl-hom )) ⟩
              k x y ∙ < (π ∙  < x ∙ ○ b , id1 A _ > ) ∙ π   , <  (π' ∙  < x ∙ ○ b , id1 A _ > ) ∙ π  , π' > >
                  ≈⟨ cdr (π-cong (car (IsCCC.e3a isCCC)) (π-cong (car (IsCCC.e3b isCCC)) refl-hom ))  ⟩
              k x y ∙ < ( (x ∙ ○ b ) ∙ π )  , <   id1 A _  ∙ π  , π' > >    ≈⟨ cdr (π-cong (sym assoc)  (π-cong idL refl-hom ))  ⟩
              k x y ∙ <  x ∙ (○ b  ∙ π )  , <    π  , π' > >    ≈⟨   cdr (π-cong (cdr (e2)) (IsCCC.π-id isCCC) ) ⟩
              k x y ∙  < x ∙ ○ _ , id1 A _  >    ≈⟨ fc0 x f y  ⟩
             f  ∎ )  ⟩
             f * ∎  
        ... | φ-cong {_} {_} {f} {f'} f=f' y = trans-hom (fc0 x f y ) f=f'
        --
        --   f ∙ <  x ∙ ○ b  , id1 A b >  ≈ f →  f ≈ k x (phi p)
        -- 
        -- why  k x {x ∙ ○ b} (iv ii i ) ≡  k x {x ∙ ○ b} i?  Lambek p.60
        --   if A is locally small, it is ≡-cong.
        postulate
           k-cong : {a b c : Obj A}  → (x :  Hom A 1 a) → (f g :  Hom A b c ) → A [ f ≈ g ] →  (fp : φ x {b} {c} f ) (gp :   φ x {b} {c} g )
             → A [ k x fp   ≈ k x gp ]
        uniq : {a b c : Obj A}  → (x :  Hom A 1 a) (f :  Hom A b c) (phi  :  φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) →
            A [  f' ∙ <  x ∙ ○ b  , id1 A b >  ≈ f ] → A [ f' ≈ k x phi ]
        uniq {a} {b} {c} x f phi  f' fx=p  = sym (begin
               k x phi ≈⟨ k-cong x _ _ (sym fx=p)  phi i ⟩
               k x {f' ∙ < x ∙ ○ b , id1 A b >} i ≈⟨ trans-hom (sym assoc)  (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π'
               f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii i i ) -- ( f' ∙ < (x ∙ ○ b) ∙ π'              , id1 A b ∙ π' > ) 
                  ≈⟨ cdr (π-cong (k-cong x (x ∙ ○ b) (x ∙ ○ b) refl-hom i (iv ii i) ) refl-hom)  ⟩
               f' ∙ < k x {x ∙ ○ b} (iv ii i ) , k x {id1 A b} i >   ≈⟨ refl-hom ⟩
               f' ∙ < k x {x} ii ∙ < π , k x {○ b} i >  , k x {id1 A b} i >   -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' >  , id1 A b ∙ π' > ) 
                   ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ 
               f' ∙  <  π ∙ < π , (○ b ∙ π' ) >  , π' >   ≈⟨ cdr (π-cong (IsCCC.e3a isCCC)  refl-hom) ⟩
               f' ∙  < π , π' >  ≈⟨ cdr (IsCCC.π-id isCCC) ⟩
               f' ∙  id1 A _ ≈⟨ idR ⟩
               f' ∎  )  

  -- functional completeness ε form
  FC : {a b : Obj A}  → (φ  : Poly a b 1 )  → Fc {a} {b} φ 
  FC {a} {b} φ = record {
     sl = A [ k (Poly.x φ ) (Poly.phi φ) o < id1 A _ ,  ○ a  > ] 
     ; isSelect = begin
        ε ∙ <  ((k (Poly.x φ) (Poly.phi φ)∙ < id1 A _ ,  ○ a > ) ∙ π')  * ,  Poly.x φ  > ≈⟨ {!!} ⟩
        ε ∙ <  (k (Poly.x φ) (Poly.phi φ)∙ (< id1 A _ ,  ○ a >  ∙ π'))  * ,  Poly.x φ  > ≈⟨ {!!} ⟩
        ε ∙ ( < (k (Poly.x φ ) (Poly.phi φ) * ) ∙   (Poly.x φ  ∙  ○ 1)   ,  id1 A 1 > ) ≈⟨ {!!} ⟩ 
        ε ∙ ( < (k (Poly.x φ ) (Poly.phi φ) * ) ∙ (π  ∙ <  Poly.x φ  ∙  ○ 1  , id1 A 1 > ) ,  id1 A 1 > ) ≈⟨ {!!} ⟩ 
        ε ∙ ( < ((k (Poly.x φ ) (Poly.phi φ) * ) ∙ π ) ∙ <  Poly.x φ  ∙  ○ 1  , id1 A 1 > , π' ∙  <  Poly.x φ  ∙  ○ 1  , id1 A 1 >  > ) ≈⟨ {!!} ⟩ 
        ε ∙ ( < ((k (Poly.x φ ) (Poly.phi φ) * ) ∙ π ) , π' >   ∙ <  Poly.x φ  ∙  ○ 1  , id1 A 1 > ) ≈⟨ assoc ⟩ 
        (ε ∙ < ((k (Poly.x φ ) (Poly.phi φ) * ) ∙ π ) , π' >  ) ∙ <  Poly.x φ  ∙  ○ 1  , id1 A 1 > ≈⟨ car ( IsCCC.e4a isCCC ) ⟩ 
        k (Poly.x φ ) (Poly.phi φ) ∙ <  Poly.x φ  ∙  ○ 1  , id1 A 1 >  ≈⟨ fc0 φ  ⟩
        Poly.f φ ∎
     ; isUnique = {!!} 
    }  where
        fc0 :  {b c : Obj A} (p : Poly b c 1) → A [  k (Poly.x p ) (Poly.phi p) ∙ <  Poly.x p  ∙  ○ 1  , id1 A 1 >  ≈ Poly.f p ]
        fc0 p =  Functional-completeness.fp (functional-completeness p)


-- end