Mercurial > hg > Members > kono > Proof > category
view cat-utility.agda @ 80:e945c201364a
Adjoint of U_T F_T
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 27 Jul 2013 11:52:10 +0900 |
parents | 84a150c980ce |
children | ee25f96ee8cc |
line wrap: on
line source
module cat-utility where -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open Functor id1 : ∀{c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (a : Obj A ) → Hom A a a id1 A a = (Id {_} {_} {_} {A} a) record IsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Obj A → Obj B ) ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) ) ( _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field universalMapping : {a' : Obj A} { b' : Obj B } → { f : Hom A a' (FObj U b') } → A [ A [ FMap U ( f * ) o η a' ] ≈ f ] uniquness : {a' : Obj A} { b' : Obj B } → { f : Hom A a' (FObj U b') } → { g : Hom B (F a') b' } → A [ A [ FMap U g o η a' ] ≈ f ] → B [ f * ≈ g ] record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Obj A → Obj B ) ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where infixr 11 _* field _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b isUniversalMapping : IsUniversalMapping A B U F η _* open NTrans open import Category.Cat record IsAdjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( η : NTrans A A identityFunctor ( U ○ F ) ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field adjoint1 : { b : Obj B } → A [ A [ ( FMap U ( TMap ε b )) o ( TMap η ( FObj U b )) ] ≈ id1 A (FObj U b) ] adjoint2 : {a : Obj A} → B [ B [ ( TMap ε ( FObj F a )) o ( FMap F ( TMap η a )) ] ≈ id1 B (FObj F a) ] record Adjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( η : NTrans A A identityFunctor ( U ○ F ) ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field isAdjunction : IsAdjunction A B U F η ε record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) ( μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field assoc : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity2 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where eta : NTrans A A identityFunctor T eta = η mu : NTrans A A (T ○ T) T mu = μ field isMonad : IsMonad A T η μ Functor*Nat : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') (F : Functor B C) -> { G H : Functor A B } -> ( n : NTrans A B G H ) -> NTrans A C (F ○ G) (F ○ H) Functor*Nat A {B} C F {G} {H} n = record { TMap = \a -> FMap F (TMap n a) ; isNTrans = record { naturality = naturality } } where naturality : {a b : Obj A} {f : Hom A a b} → C [ C [ (FMap F ( FMap H f )) o ( FMap F (TMap n a)) ] ≈ C [ (FMap F (TMap n b )) o (FMap F (FMap G f)) ] ] naturality {a} {b} {f} = let open ≈-Reasoning (C) in begin (FMap F ( FMap H f )) o ( FMap F (TMap n a)) ≈⟨ sym (distr F) ⟩ FMap F ( B [ (FMap H f) o TMap n a ]) ≈⟨ IsFunctor.≈-cong (isFunctor F) ( nat n ) ⟩ FMap F ( B [ (TMap n b ) o FMap G f ] ) ≈⟨ distr F ⟩ (FMap F (TMap n b )) o (FMap F (FMap G f)) ∎ Nat*Functor : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') { G H : Functor B C } -> ( n : NTrans B C G H ) -> (F : Functor A B) -> NTrans A C (G ○ F) (H ○ F) Nat*Functor A {B} C {G} {H} n F = record { TMap = \a -> TMap n (FObj F a) ; isNTrans = record { naturality = naturality } } where naturality : {a b : Obj A} {f : Hom A a b} → C [ C [ ( FMap H (FMap F f )) o ( TMap n (FObj F a)) ] ≈ C [ (TMap n (FObj F b )) o (FMap G (FMap F f)) ] ] naturality {a} {b} {f} = IsNTrans.naturality ( isNTrans n) record Kleisli { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) ( μ : NTrans A A (T ○ T) T ) ( M : Monad A T η μ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where monad : Monad A T η μ monad = M -- g ○ f = μ(c) T(g) f join : { a b : Obj A } → { c : Obj A } → ( Hom A b ( FObj T c )) → ( Hom A a ( FObj T b)) → Hom A a ( FObj T c ) join {_} {_} {c} g f = A [ TMap μ c o A [ FMap T g o f ] ]