Mercurial > hg > Members > kono > Proof > category
view src/idF.agda @ 953:eb62812b5885
Topos written
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Feb 2021 12:09:48 +0900 |
parents | ac53803b3b2a |
children | 45de2b31bf02 |
line wrap: on
line source
module idF where open import Category open import HomReasoning identityFunctor : ∀{c₁ c₂ ℓ} {C : Category c₁ c₂ ℓ} → Functor C C identityFunctor {C = C} = record { FObj = λ x → x ; FMap = λ x → x ; isFunctor = isFunctor } where isFunctor : ∀{c₁ c₂ ℓ} {C : Category c₁ c₂ ℓ} → IsFunctor C C (λ x → x) (λ x → x) isFunctor {C = C} = record { ≈-cong = Lemma1 ; identity = Lemma2 ; distr = Lemma3 } where FMap : {a b : Obj C} -> Hom C a b -> Hom C a b FMap = λ x → x FObj : Obj C -> Obj C FObj = λ x → x Lemma1 : {A B : Obj C} {f g : Hom C A B} → C [ f ≈ g ] → C [ FMap f ≈ FMap g ] Lemma1 {a} {b} {f} {g} f≈g = let open ≈-Reasoning C in begin FMap f ≈⟨⟩ f ≈⟨ f≈g ⟩ g ≈⟨⟩ FMap g ∎ Lemma2 : {A : Obj C} → C [ (FMap {A} {A} (Id {_} {_} {_} {C} A)) ≈ (Id {_} {_} {_} {C} (FObj A)) ] Lemma2 {A} = let open ≈-Reasoning C in begin (FMap {A} {A} (Id {_} {_} {_} {C} A)) ≈⟨⟩ (Id {_} {_} {_} {C} (FObj A)) ∎ Lemma3 : {a b c : Obj C} {f : Hom C a b} {g : Hom C b c} → C [ FMap (C [ g o f ]) ≈ (C [ FMap g o FMap f ] )] Lemma3 {a} {b} {c} {f} {g} = let open ≈-Reasoning C in begin FMap ( g o f ) ≈⟨⟩ g o f ≈⟨⟩ FMap g o FMap f ∎