view CCC.agda @ 784:f27d966939f8

add CCC hom
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 17 Apr 2019 14:47:39 +0900
parents bded2347efa4
children a67959bcd44b
line wrap: on
line source

open import Level
open import Category 
module CCC where

open import HomReasoning
open import cat-utility
open  import  Relation.Binary.PropositionalEquality


open import HomReasoning 

record IsCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) 
         ( 1 : Obj A )
         ( ○ : (a : Obj A ) → Hom A a 1 )
          ( _∧_ : Obj A → Obj A → Obj A  ) 
          ( <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b)  ) 
          ( π : {a b : Obj A } → Hom A (a ∧ b) a ) 
          ( π' : {a b : Obj A } → Hom A (a ∧ b) b ) 
          ( _<=_ : (a b : Obj A ) → Obj A ) 
          ( _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ) 
          ( ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a )
             :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
     field
       -- cartesian
       e2  : {a : Obj A} → ∀ ( f : Hom A a 1 ) →  A [ f ≈ ○ a ]
       e3a : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } →  A [ A [ π o < f , g > ] ≈ f ]
       e3b : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } →  A [ A [ π' o < f , g > ] ≈ g ]
       e3c : {a b c : Obj A} → { h : Hom A c (a ∧ b) } →  A [ < A [ π o h ] , A [ π' o h  ] >  ≈ h ]
       π-congl :  {a b c : Obj A} → { f f' : Hom A c a }{ g : Hom A c b } → A [ f ≈ f' ]  →  A [ < f , g >  ≈ < f' , g > ] 
       π-congr :  {a b c : Obj A} → { f : Hom A c a }{ g g' : Hom A c b } → A [ g ≈ g' ]  →  A [ < f , g >  ≈ < f , g' > ] 
       -- closed
       e4a : {a b c : Obj A} → { h : Hom A (c ∧ b) a } →  A [ A [ ε o < A [ (h *) o π ]  ,  π' > ] ≈ h ]
       e4b : {a b c : Obj A} → { k : Hom A c (a <= b ) } →  A [ ( A [ ε o < A [ k o  π ]  ,  π' > ] ) * ≈ k ]

     e'2 : A [ ○ 1 ≈ id1 A 1 ]
     e'2 = let open  ≈-Reasoning A in begin
            ○ 1
        ≈↑⟨ e2 (id1 A 1 ) ⟩
           id1 A 1

     e''2 : {a b : Obj A} {f : Hom A a b } → A [ A [  ○ b o f ] ≈ ○ a ]
     e''2 {a} {b} {f} = let open  ≈-Reasoning A in begin
           ○ b o f
        ≈⟨ e2 (○ b o f) ⟩
           ○ a

     distr : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → A [ A [ < f , g > o h ]  ≈  < A [ f o h ] , A [ g o h ] > ]
     distr {a} {b} {c} {d} {f} {g} {h} = let open  ≈-Reasoning A in begin
            < f , g > o h
        ≈↑⟨ e3c ⟩
            < π o  < f , g > o h  , π' o  < f , g > o h  >
        ≈⟨ π-congl assoc ⟩
            < ( π o  < f , g > ) o h  , π' o  < f , g > o h  >
        ≈⟨ π-congl (car e3a ) ⟩
            < f o h  , π' o  < f , g > o h  >
        ≈⟨ π-congr assoc ⟩
            < f o h  , (π' o  < f , g > ) o h  >
        ≈⟨  π-congr (car e3b ) ⟩
            < f o h ,  g o h  >

     _×_ :  {  a b c d e : Obj A } ( f : Hom A a d ) (g : Hom A b e ) ( h : Hom A c (a ∧ b) ) → Hom A c ( d ∧ e )
     f × g  = λ h →  < A [ f o A [ π o h  ] ] , A [ g o A [ π' o h ] ] >

record CCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
     field
         1 : Obj A 
         ○ : (a : Obj A ) → Hom A a 1 
         _∧_ : Obj A → Obj A → Obj A   
         <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b)  
         π : {a b : Obj A } → Hom A (a ∧ b) a 
         π' : {a b : Obj A } → Hom A (a ∧ b) b  
         _<=_ : (a b : Obj A ) → Obj A 
         _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) 
         ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a 
         isCCC : IsCCC A 1 ○ _∧_ <_,_> π π' _<=_ _* ε