Mercurial > hg > Members > kono > Proof > category
view CCC.agda @ 784:f27d966939f8
add CCC hom
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 17 Apr 2019 14:47:39 +0900 |
parents | bded2347efa4 |
children | a67959bcd44b |
line wrap: on
line source
open import Level open import Category module CCC where open import HomReasoning open import cat-utility open import Relation.Binary.PropositionalEquality open import HomReasoning record IsCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A ) ( ○ : (a : Obj A ) → Hom A a 1 ) ( _∧_ : Obj A → Obj A → Obj A ) ( <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b) ) ( π : {a b : Obj A } → Hom A (a ∧ b) a ) ( π' : {a b : Obj A } → Hom A (a ∧ b) b ) ( _<=_ : (a b : Obj A ) → Obj A ) ( _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ) ( ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field -- cartesian e2 : {a : Obj A} → ∀ ( f : Hom A a 1 ) → A [ f ≈ ○ a ] e3a : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } → A [ A [ π o < f , g > ] ≈ f ] e3b : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } → A [ A [ π' o < f , g > ] ≈ g ] e3c : {a b c : Obj A} → { h : Hom A c (a ∧ b) } → A [ < A [ π o h ] , A [ π' o h ] > ≈ h ] π-congl : {a b c : Obj A} → { f f' : Hom A c a }{ g : Hom A c b } → A [ f ≈ f' ] → A [ < f , g > ≈ < f' , g > ] π-congr : {a b c : Obj A} → { f : Hom A c a }{ g g' : Hom A c b } → A [ g ≈ g' ] → A [ < f , g > ≈ < f , g' > ] -- closed e4a : {a b c : Obj A} → { h : Hom A (c ∧ b) a } → A [ A [ ε o < A [ (h *) o π ] , π' > ] ≈ h ] e4b : {a b c : Obj A} → { k : Hom A c (a <= b ) } → A [ ( A [ ε o < A [ k o π ] , π' > ] ) * ≈ k ] e'2 : A [ ○ 1 ≈ id1 A 1 ] e'2 = let open ≈-Reasoning A in begin ○ 1 ≈↑⟨ e2 (id1 A 1 ) ⟩ id1 A 1 ∎ e''2 : {a b : Obj A} {f : Hom A a b } → A [ A [ ○ b o f ] ≈ ○ a ] e''2 {a} {b} {f} = let open ≈-Reasoning A in begin ○ b o f ≈⟨ e2 (○ b o f) ⟩ ○ a ∎ distr : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → A [ A [ < f , g > o h ] ≈ < A [ f o h ] , A [ g o h ] > ] distr {a} {b} {c} {d} {f} {g} {h} = let open ≈-Reasoning A in begin < f , g > o h ≈↑⟨ e3c ⟩ < π o < f , g > o h , π' o < f , g > o h > ≈⟨ π-congl assoc ⟩ < ( π o < f , g > ) o h , π' o < f , g > o h > ≈⟨ π-congl (car e3a ) ⟩ < f o h , π' o < f , g > o h > ≈⟨ π-congr assoc ⟩ < f o h , (π' o < f , g > ) o h > ≈⟨ π-congr (car e3b ) ⟩ < f o h , g o h > ∎ _×_ : { a b c d e : Obj A } ( f : Hom A a d ) (g : Hom A b e ) ( h : Hom A c (a ∧ b) ) → Hom A c ( d ∧ e ) f × g = λ h → < A [ f o A [ π o h ] ] , A [ g o A [ π' o h ] ] > record CCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field 1 : Obj A ○ : (a : Obj A ) → Hom A a 1 _∧_ : Obj A → Obj A → Obj A <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b) π : {a b : Obj A } → Hom A (a ∧ b) a π' : {a b : Obj A } → Hom A (a ∧ b) b _<=_ : (a b : Obj A ) → Obj A _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a isCCC : IsCCC A 1 ○ _∧_ <_,_> π π' _<=_ _* ε