Mercurial > hg > Members > kono > Proof > category
view README.txt @ 793:f37f11e1b871
Hom a,b = Hom 1 b^a
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Apr 2019 02:41:53 +0900 |
parents | 60942538dc41 |
children | 2c5ae3015a05 |
line wrap: on
line source
-- basic training level-ex.agda list-level.agda list.agda record-ex.agda negnat.agda system-f.agda system-t.agda -- Category Utilities HomReasoning.agda -- extensions for reasoning cat-utility.agda -- basic category constructs -- Category Theorems idF.agda category-ex.agda list-monoid-cat.agda list-nat.agda list-nat0.agda maybeCat.agda monoid-monad.agda yoneda.agda -- Monad and adjunction kleisli.agda em-category.agda adj-monad.agda comparison-em.agda comparison-functor.agda maybe-monad.agda maybeCat.agda -- Limit equalizer.agda universal-mapping.agda free-monoid.agda CatExponetial.agda pullback.agda -- including limit from product and equalizer discrete.agda limit-to.agda SetsCompleteness.agda -- Freyd Adjoint Functor Theorem Comma.agda Comma1.agda freyd.agda freyd1.agda freyd2.agda -- Monoidal functor and Applicative monoidal.agda -- Monoidal category and Functor applicative.agda -- Applicative functor is a monoidal functor monad→monoidal.agda -- no yet finished -- repositories https://bitbucket.org/shinji_kono/category-exercise-in-agda/src