view README.txt @ 793:f37f11e1b871

Hom a,b = Hom 1 b^a
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 22 Apr 2019 02:41:53 +0900
parents 60942538dc41
children 2c5ae3015a05
line wrap: on
line source

-- basic training

    level-ex.agda
    list-level.agda
    list.agda
    record-ex.agda
    negnat.agda

    system-f.agda
    system-t.agda

-- Category Utilities 

    HomReasoning.agda             -- extensions for reasoning
    cat-utility.agda              -- basic category constructs

-- Category Theorems

    idF.agda
    category-ex.agda
    list-monoid-cat.agda
    list-nat.agda
    list-nat0.agda
    maybeCat.agda
    monoid-monad.agda

    yoneda.agda

-- Monad and adjunction

    kleisli.agda
    em-category.agda
    adj-monad.agda
    comparison-em.agda
    comparison-functor.agda
    maybe-monad.agda
    maybeCat.agda

-- Limit 

    equalizer.agda
    universal-mapping.agda
    free-monoid.agda
    CatExponetial.agda
    pullback.agda                -- including limit from product and equalizer
    discrete.agda
    limit-to.agda
    SetsCompleteness.agda

-- Freyd Adjoint Functor Theorem

    Comma.agda
    Comma1.agda
    freyd.agda
    freyd1.agda
    freyd2.agda

-- Monoidal functor and Applicative

    monoidal.agda                 -- Monoidal category and Functor
    applicative.agda              -- Applicative functor is a monoidal functor
    monad→monoidal.agda

-- no yet finished

-- repositories

   https://bitbucket.org/shinji_kono/category-exercise-in-agda/src