Mercurial > hg > Members > kono > Proof > category
view free-monoid.agda @ 774:f3a493da92e8
add simple category version
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 13 Jun 2018 12:56:38 +0900 |
parents | 3d41a8edbf63 |
children |
line wrap: on
line source
-- Free Monoid and it's Universal Mapping ---- using Sets and forgetful functor -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> open import Category -- https://github.com/konn/category-agda open import Level module free-monoid { c c₁ c₂ ℓ : Level } where open import Category.Sets open import Category.Cat open import HomReasoning open import cat-utility open import Relation.Binary.Core open import universal-mapping open import Relation.Binary.PropositionalEquality -- from https://github.com/danr/Agda-projects/blob/master/Category-Theory/FreeMonoid.agda open import Algebra.FunctionProperties using (Op₁; Op₂) open import Algebra.Structures open import Data.Product record ≡-Monoid : Set (suc c) where infixr 9 _∙_ field Carrier : Set c _∙_ : Op₂ Carrier ε : Carrier isMonoid : IsMonoid _≡_ _∙_ ε open ≡-Monoid ≡-cong = Relation.Binary.PropositionalEquality.cong -- module ≡-reasoning (m : ≡-Monoid ) where infixr 40 _::_ data List (A : Set c ) : Set c where [] : List A _::_ : A → List A → List A infixl 30 _++_ _++_ : {A : Set c } → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) list-id-l : { A : Set c } → { x : List A } → [] ++ x ≡ x list-id-l {_} {_} = refl list-id-r : { A : Set c } → { x : List A } → x ++ [] ≡ x list-id-r {_} {[]} = refl list-id-r {A} {x :: xs} = ≡-cong ( λ y → x :: y ) ( list-id-r {A} {xs} ) list-assoc : {A : Set c} → { xs ys zs : List A } → ( xs ++ ( ys ++ zs ) ) ≡ ( ( xs ++ ys ) ++ zs ) list-assoc {_} {[]} {_} {_} = refl list-assoc {A} {x :: xs} {ys} {zs} = ≡-cong ( λ y → x :: y ) ( list-assoc {A} {xs} {ys} {zs} ) list-o-resp-≈ : {A : Set c} → {f g : List A } → {h i : List A } → f ≡ g → h ≡ i → (h ++ f) ≡ (i ++ g) list-o-resp-≈ {A} refl refl = refl list-isEquivalence : {A : Set c} → IsEquivalence {_} {_} {List A } _≡_ list-isEquivalence {A} = -- this is the same function as A's equivalence but has different types record { refl = refl ; sym = sym ; trans = trans } _<_∙_> : (m : ≡-Monoid) → Carrier m → Carrier m → Carrier m m < x ∙ y > = _∙_ m x y infixr 9 _<_∙_> record Monomorph ( a b : ≡-Monoid ) : Set c where field morph : Carrier a → Carrier b identity : morph (ε a) ≡ ε b homo : ∀{x y} → morph ( a < x ∙ y > ) ≡ b < morph x ∙ morph y > open Monomorph _+_ : { a b c : ≡-Monoid } → Monomorph b c → Monomorph a b → Monomorph a c _+_ {a} {b} {c} f g = record { morph = λ x → morph f ( morph g x ) ; identity = identity1 ; homo = homo1 } where identity1 : morph f ( morph g (ε a) ) ≡ ε c identity1 = let open ≡-Reasoning in begin morph f (morph g (ε a)) ≡⟨ ≡-cong (morph f ) ( identity g ) ⟩ morph f (ε b) ≡⟨ identity f ⟩ ε c ∎ homo1 : ∀{x y} → morph f ( morph g ( a < x ∙ y > )) ≡ ( c < (morph f (morph g x )) ∙(morph f (morph g y) ) > ) homo1 {x} {y} = let open ≡-Reasoning in begin morph f (morph g (a < x ∙ y >)) ≡⟨ ≡-cong (morph f ) ( homo g) ⟩ morph f (b < morph g x ∙ morph g y >) ≡⟨ homo f ⟩ c < morph f (morph g x) ∙ morph f (morph g y) > ∎ M-id : { a : ≡-Monoid } → Monomorph a a M-id = record { morph = λ x → x ; identity = refl ; homo = refl } _==_ : { a b : ≡-Monoid } → Monomorph a b → Monomorph a b → Set c _==_ f g = morph f ≡ morph g -- Functional Extensionality Axiom (We cannot prove this in Agda / Coq, just assumming ) -- postulate extensionality : { a b : Obj A } {f g : Hom A a b } → (∀ {x} → (f x ≡ g x)) → ( f ≡ g ) postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c c isMonoids : IsCategory ≡-Monoid Monomorph _==_ _+_ (M-id) isMonoids = record { isEquivalence = isEquivalence1 ; identityL = refl ; identityR = refl ; associative = refl ; o-resp-≈ = λ {a} {b} {c} {f} {g} {h} {i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} } where isEquivalence1 : { a b : ≡-Monoid } → IsEquivalence {_} {_} {Monomorph a b} _==_ isEquivalence1 = -- this is the same function as A's equivalence but has different types record { refl = refl ; sym = sym ; trans = trans } o-resp-≈ : {a b c : ≡-Monoid } {f g : Monomorph a b } → {h i : Monomorph b c } → f == g → h == i → (h + f) == (i + g) o-resp-≈ {a} {b} {c} {f} {g} {h} {i} f==g h==i = let open ≡-Reasoning in begin morph ( h + f ) ≡⟨ ≡-cong ( λ g → ( ( λ (x : Carrier a ) → g x ) )) (extensionality {Carrier a} lemma11) ⟩ morph ( i + g ) ∎ where lemma11 : (x : Carrier a) → morph (h + f) x ≡ morph (i + g) x lemma11 x = let open ≡-Reasoning in begin morph ( h + f ) x ≡⟨⟩ morph h ( ( morph f ) x ) ≡⟨ ≡-cong ( \y -> morph h ( y x ) ) f==g ⟩ morph h ( morph g x ) ≡⟨ ≡-cong ( \y -> y ( morph g x ) ) h==i ⟩ morph i ( morph g x ) ≡⟨⟩ morph ( i + g ) x ∎ Monoids : Category _ _ _ Monoids = record { Obj = ≡-Monoid ; Hom = Monomorph ; _o_ = _+_ ; _≈_ = _==_ ; Id = M-id ; isCategory = isMonoids } A = Sets {c} B = Monoids open Functor U : Functor B A U = record { FObj = λ m → Carrier m ; FMap = λ f → morph f ; isFunctor = record { ≈-cong = λ x → x ; identity = refl ; distr = refl } } -- FObj list : (a : Set c) → ≡-Monoid list a = record { Carrier = List a ; _∙_ = _++_ ; ε = [] ; isMonoid = record { identity = ( ( λ x → list-id-l {a} ) , ( λ x → list-id-r {a} ) ) ; isSemigroup = record { assoc = λ x → λ y → λ z → sym ( list-assoc {a} {x} {y} {z} ) ; isEquivalence = list-isEquivalence ; ∙-cong = λ x → λ y → list-o-resp-≈ y x } } } Generator : Obj A → Obj B Generator s = list s -- solution -- [a,b,c] → f(a) ∙ f(b) ∙ f(c) Φ : {a : Obj A } {b : Obj B} ( f : Hom A a (FObj U b) ) → List a → Carrier b Φ {a} {b} f [] = ε b Φ {a} {b} f ( x :: xs ) = b < ( f x ) ∙ (Φ {a} {b} f xs ) > solution : (a : Obj A ) (b : Obj B) ( f : Hom A a (FObj U b) ) → Hom B (Generator a ) b solution a b f = record { morph = λ (l : List a) → Φ f l ; identity = refl; homo = λ {x y} → homo1 x y } where _*_ : Carrier b → Carrier b → Carrier b _*_ f g = b < f ∙ g > homo1 : (x y : Carrier (Generator a)) → Φ f ( (Generator a) < x ∙ y > ) ≡ (Φ f x) * (Φ {a} {b} f y ) homo1 [] y = sym (proj₁ ( IsMonoid.identity ( isMonoid b) ) (Φ f y)) homo1 (x :: xs) y = let open ≡-Reasoning in sym ( begin (Φ {a} {b} f (x :: xs)) * (Φ f y) ≡⟨⟩ ((f x) * (Φ f xs)) * (Φ f y) ≡⟨ ( IsMonoid.assoc ( isMonoid b )) _ _ _ ⟩ (f x) * ( (Φ f xs) * (Φ f y) ) ≡⟨ sym ( (IsMonoid.∙-cong (isMonoid b)) refl (homo1 xs y )) ⟩ (f x) * ( Φ f ( xs ++ y ) ) ≡⟨⟩ Φ {a} {b} f ( x :: ( xs ++ y ) ) ≡⟨⟩ Φ {a} {b} f ( (x :: xs) ++ y ) ≡⟨⟩ Φ {a} {b} f ((Generator a) < ( x :: xs) ∙ y > ) ∎ ) eta : (a : Obj A) → Hom A a ( FObj U (Generator a) ) eta a = λ ( x : a ) → x :: [] FreeMonoidUniveralMapping : UniversalMapping A B U FreeMonoidUniveralMapping = record { F = Generator ; η = eta ; _* = λ {a b} → λ f → solution a b f ; isUniversalMapping = record { universalMapping = λ {a b f} → universalMapping {a} {b} {f} ; uniquness = λ {a b f g} → uniquness {a} {b} {f} {g} } } where universalMapping : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → FMap U ( solution a b f ) o eta a ≡ f universalMapping {a} {b} {f} = let open ≡-Reasoning in begin FMap U ( solution a b f ) o eta a ≡⟨⟩ ( λ (x : a ) → Φ {a} {b} f (eta a x) ) ≡⟨⟩ ( λ (x : a ) → Φ {a} {b} f ( x :: [] ) ) ≡⟨⟩ ( λ (x : a ) → b < ( f x ) ∙ (Φ {a} {b} f [] ) > ) ≡⟨⟩ ( λ (x : a ) → b < ( f x ) ∙ ( ε b ) > ) ≡⟨ ≡-cong ( λ g → ( ( λ (x : a ) → g x ) )) (extensionality {a} lemma-ext1) ⟩ ( λ (x : a ) → f x ) ≡⟨⟩ f ∎ where lemma-ext1 : ∀( x : a ) → b < ( f x ) ∙ ( ε b ) > ≡ f x lemma-ext1 x = ( proj₂ ( IsMonoid.identity ( isMonoid b) ) ) (f x) uniquness : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → { g : Hom B (Generator a) b } → (FMap U g) o (eta a ) ≡ f → B [ solution a b f ≈ g ] uniquness {a} {b} {f} {g} eq = extensionality lemma-ext2 where lemma-ext2 : ( ∀( x : List a ) → (morph ( solution a b f)) x ≡ (morph g) x ) -- (morph ( solution a b f)) [] ≡ (morph g) [] ) lemma-ext2 [] = let open ≡-Reasoning in begin (morph ( solution a b f)) [] ≡⟨ identity ( solution a b f) ⟩ ε b ≡⟨ sym ( identity g ) ⟩ (morph g) [] ∎ lemma-ext2 (x :: xs) = let open ≡-Reasoning in begin (morph ( solution a b f)) ( x :: xs ) ≡⟨ homo ( solution a b f) {x :: []} {xs} ⟩ b < ((morph ( solution a b f)) ( x :: []) ) ∙ ((morph ( solution a b f)) xs ) > ≡⟨ ≡-cong ( λ k → (b < ((morph ( solution a b f)) ( x :: []) ) ∙ k > )) (lemma-ext2 xs ) ⟩ b < ((morph ( solution a b f)) ( x :: []) ) ∙((morph g) ( xs )) > ≡⟨ ≡-cong ( λ k → ( b < ( k x ) ∙ ((morph g) ( xs )) > )) ( begin ( λ x → (morph ( solution a b f)) ( x :: [] ) ) ≡⟨ extensionality {a} lemma-ext3 ⟩ ( λ x → (morph g) ( x :: [] ) ) ∎ ) ⟩ b < ((morph g) ( x :: [] )) ∙((morph g) ( xs )) > ≡⟨ sym ( homo g ) ⟩ (morph g) ( x :: xs ) ∎ where lemma-ext3 : ∀( x : a ) → (morph ( solution a b f)) (x :: []) ≡ (morph g) ( x :: [] ) lemma-ext3 x = let open ≡-Reasoning in begin (morph ( solution a b f)) (x :: []) ≡⟨ ( proj₂ ( IsMonoid.identity ( isMonoid b) )(f x) ) ⟩ f x ≡⟨ sym ( ≡-cong (λ f → f x ) eq ) ⟩ (morph g) ( x :: [] ) ∎ open NTrans -- fm-ε b = Φ fm-ε : NTrans B B ( ( FunctorF A B FreeMonoidUniveralMapping) ○ U) identityFunctor fm-ε = nat-ε A B FreeMonoidUniveralMapping -- TMap = λ a → solution (FObj U a) a (λ x → x ) ; -- isNTrans = record { -- commute = commute1 -- } -- } where -- commute1 : {a b : Obj B} {f : Hom B a b} → let open ≈-Reasoning B renaming (_o_ to _*_ ) in -- ( FMap (identityFunctor {_} {_} {_} {B}) f * solution (FObj U a) a (λ x → x) ) ≈ -- ( solution (FObj U b) b (λ x → x) * FMap (FunctorF A B FreeMonoidUniveralMapping ○ U) f ) -- commute1 {a} {b} {f} = let open ≡-Reasoning in begin -- morph ((B ≈-Reasoning.o FMap identityFunctor f) (solution (FObj U a) a (λ x → x))) -- ≡⟨ {!!} ⟩ -- morph ((B ≈-Reasoning.o solution (FObj U b) b (λ x → x)) (FMap (FunctorF A B FreeMonoidUniveralMapping ○ U) f)) -- ∎ fm-η : NTrans A A identityFunctor ( U ○ ( FunctorF A B FreeMonoidUniveralMapping) ) fm-η = record { TMap = λ a → λ (x : a) → x :: [] ; isNTrans = record { commute = commute1 } } where commute1 : {a b : Obj A} {f : Hom A a b} → let open ≈-Reasoning A renaming (_o_ to _*_ ) in (( FMap (U ○ FunctorF A B FreeMonoidUniveralMapping) f ) * (λ x → x :: []) ) ≈ ( (λ x → x :: []) * (λ z → FMap (identityFunctor {_} {_} {_} {A}) f z ) ) commute1 {a} {b} {f} = refl -- λ (x : a ) → f x :: [] -- A = Sets {c} -- B = Monoids -- U underline funcotr -- F generator = x :: [] -- Eta x :: [] -- Epsiron morph = Φ adj = UMAdjunction A B U FreeMonoidUniveralMapping