Mercurial > hg > Members > kono > Proof > category
view discrete.agda @ 458:fd79b6d9f350
fix comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Mar 2017 19:04:04 +0900 |
parents | 0ba86e29f492 |
children | 8436a018f88a |
line wrap: on
line source
open import Category -- https://github.com/konn/category-agda open import Level module discrete where open import Relation.Binary.Core data TwoObject {c₁ : Level} : Set c₁ where t0 : TwoObject t1 : TwoObject --- --- two objects category ( for limit to equalizer proof ) --- --- f --- -----→ --- 0 1 --- -----→ --- g -- -- missing arrows are constrainted by TwoHom data data TwoHom {c₁ c₂ : Level } : TwoObject {c₁} → TwoObject {c₁} → Set c₂ where id-t0 : TwoHom t0 t0 id-t1 : TwoHom t1 t1 arrow-f : TwoHom t0 t1 arrow-g : TwoHom t0 t1 comp : ∀ {c₁ c₂} → {a b c : TwoObject {c₁}} → TwoHom {c₁} {c₂} b c → TwoHom {c₁} {c₂} a b → TwoHom {c₁} {c₂} a c comp {_} {_} {t0} {t1} {t1} id-t1 arrow-f = arrow-f comp {_} {_} {t0} {t1} {t1} id-t1 arrow-g = arrow-g comp {_} {_} {t1} {t1} {t1} id-t1 id-t1 = id-t1 comp {_} {_} {t0} {t0} {t1} arrow-f id-t0 = arrow-f comp {_} {_} {t0} {t0} {t1} arrow-g id-t0 = arrow-g comp {_} {_} {t0} {t0} {t0} id-t0 id-t0 = id-t0 open TwoHom _×_ : ∀ {c₁ c₂} → {a b c : TwoObject {c₁}} → ( TwoHom {c₁} {c₂} b c ) → ( TwoHom {c₁} {c₂} a b ) → ( TwoHom {c₁} {c₂} a c ) _×_ {c₁} {c₂} {a} {b} {c} f g = comp {c₁} {c₂} {a} {b} {c} f g -- f g h -- d <- c <- b <- a -- -- It can be proved without TwoHom constraints assoc-× : {c₁ c₂ : Level } {a b c d : TwoObject {c₁} } {f : (TwoHom {c₁} {c₂ } c d )} → {g : (TwoHom {c₁} {c₂ } b c )} → {h : (TwoHom {c₁} {c₂ } a b )} → ( f × (g × h)) ≡ ((f × g) × h ) assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} { id-t0 }{ id-t0 }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-f }{ id-t0 }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-g }{ id-t0 }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1 }{ arrow-f }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1 }{ arrow-g }{ id-t0 } = refl assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ arrow-f } = refl assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ arrow-g } = refl assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ id-t1 } = refl TwoId : {c₁ c₂ : Level } (a : TwoObject {c₁} ) → (TwoHom {c₁} {c₂ } a a ) TwoId {_} {_} t0 = id-t0 TwoId {_} {_} t1 = id-t1 open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) TwoCat : {c₁ c₂ : Level } → Category c₁ c₂ c₂ TwoCat {c₁} {c₂} = record { Obj = TwoObject {c₁} ; Hom = λ a b → ( TwoHom {c₁} {c₂ } a b ) ; _o_ = λ{a} {b} {c} x y → _×_ {c₁ } { c₂} {a} {b} {c} x y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → TwoId {c₁ } { c₂} a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → identityL {c₁} {c₂ } {a} {b} {f} ; identityR = λ{a b f} → identityR {c₁} {c₂ } {a} {b} {f} ; o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {c₁} {c₂ } {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → assoc-× {c₁} {c₂} {a} {b} {c} {d} {f} {g} {h} } } where identityL : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → ((TwoId B) × f) ≡ f identityL {c₁} {c₂} {t1} {t1} { id-t1 } = refl identityL {c₁} {c₂} {t0} {t0} { id-t0 } = refl identityL {c₁} {c₂} {t0} {t1} { arrow-f } = refl identityL {c₁} {c₂} {t0} {t1} { arrow-g } = refl identityR : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → ( f × TwoId A ) ≡ f identityR {c₁} {c₂} {t1} {t1} { id-t1 } = refl identityR {c₁} {c₂} {t0} {t0} { id-t0 } = refl identityR {c₁} {c₂} {t0} {t1} { arrow-f } = refl identityR {c₁} {c₂} {t0} {t1} { arrow-g } = refl o-resp-≈ : {c₁ c₂ : Level } {A B C : TwoObject {c₁} } {f g : ( TwoHom {c₁} {c₂ } A B)} {h i : ( TwoHom B C)} → f ≡ g → h ≡ i → ( h × f ) ≡ ( i × g ) o-resp-≈ {c₁} {c₂} {a} {b} {c} {f} {g} {h} {i} f==g h==i = let open ≡-Reasoning in begin ( h × f ) ≡⟨ refl ⟩ comp (h) (f) ≡⟨ cong (λ x → comp ( h ) x ) f==g ⟩ comp (h) (g) ≡⟨ cong (λ x → comp x ( g ) ) h==i ⟩ comp (i) (g) ≡⟨ refl ⟩ ( i × g ) ∎