view limit-to.agda @ 458:fd79b6d9f350

fix comment
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 02 Mar 2017 19:04:04 +0900
parents 0ba86e29f492
children 961c236807f1
line wrap: on
line source

open import Category -- https://github.com/konn/category-agda
open import Level

module limit-to where

open import cat-utility
open import HomReasoning
open import Relation.Binary.Core

open import discrete


---  Equalizer  from Limit ( 2->A functor Γ and  Nat :  K -> Γ)
---
---
---                     f
---          e       -----→
---     c -----→  a         b     A
---     ^      /     -----→
---     |k   h          g
---     |   /
---     |  /            ^
---     | /             |
---     |/              | Γ
---     d _             |
---      |\             |
---        \ K          af
---         \       -----→
---          \    t0        t1    I
---                  -----→
---                     ag
---      
---      

open Complete
open Limit
open NTrans

-- Functor Γ : TwoCat -> A

IndexFunctor :  {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( a b : Obj A) ( f g : Hom A a b ) →  Functor (TwoCat {c₁} {c₂})  A
IndexFunctor  {c₁} {c₂} {ℓ} A a b f g = record {
         FObj = λ a → fobj a
       ; FMap = λ {a} {b} f → fmap {a} {b} f
       ; isFunctor = record {
             identity = λ{x} → identity x
             ; distr = λ {a} {b} {c} {f} {g}   → distr1 {a} {b} {c} {f} {g}
             ; ≈-cong = λ {a} {b} {c} {f}   → ≈-cong  {a} {b} {c} {f}
       }
      } where
          T = TwoCat {c₁} {c₂}
          fobj :  Obj T → Obj A
          fobj t0 = a
          fobj t1 = b
          fmap :  {x y : Obj T } →  (Hom T x y  ) → Hom A (fobj x) (fobj y)
          fmap  {t0} {t0} id-t0 = id1 A a
          fmap  {t1} {t1} id-t1 = id1 A b
          fmap  {t0} {t1} arrow-f = f
          fmap  {t0} {t1} arrow-g = g
          ≈-cong :  {a : Obj T} {b : Obj T} {f g : Hom T a b}  → T [ f ≈ g ]  → A [ fmap f ≈ fmap g ]
          ≈-cong  {a} {b} {f} {.f} refl = let open  ≈-Reasoning A in refl-hom
          identity : (x : Obj T ) ->  A [ fmap (id1 T x) ≈  id1 A (fobj x) ]
          identity t0  = let open  ≈-Reasoning A in refl-hom
          identity t1  = let open  ≈-Reasoning A in refl-hom
          distr1 : {a : Obj T} {b : Obj T} {c : Obj T} {f : Hom T a b} {g : Hom T b c} →
               A [ fmap (T [ g o f ])  ≈  A [ fmap g o fmap f ] ]
          distr1  {t0} {t0} {t0} {id-t0 } { id-t0 } = let open  ≈-Reasoning A in sym-hom idL
          distr1  {t1} {t1} {t1} { id-t1 } { id-t1 } = let open  ≈-Reasoning A in begin
                   id1 A b
                ≈↑⟨ idL ⟩
                   id1 A b o id1 A b

          distr1  {t0} {t0} {t1} { id-t0 } { arrow-f } = let open  ≈-Reasoning A in begin
                  fmap (comp arrow-f id-t0)
                ≈⟨⟩
                  fmap arrow-f
                ≈↑⟨ idR ⟩
                   fmap arrow-f o id1 A a

          distr1  {t0} {t0} {t1}  { id-t0 } { arrow-g } = let open  ≈-Reasoning A in begin
                  fmap (comp arrow-g id-t0)
                ≈⟨⟩
                  fmap arrow-g
                ≈↑⟨ idR ⟩
                   fmap arrow-g o id1 A a

          distr1  {t0} {t1} {t1}  { arrow-f } { id-t1 } = let open  ≈-Reasoning A in begin
                  fmap (comp id-t1 arrow-f)
                ≈⟨⟩
                  fmap arrow-f
                ≈↑⟨ idL ⟩
                   id1 A b o  fmap arrow-f

          distr1  {t0} {t1} {t1} { arrow-g } { id-t1 } = let open  ≈-Reasoning A in begin
                  fmap (comp id-t1 arrow-g)
                ≈⟨⟩
                  fmap arrow-g
                ≈↑⟨ idL ⟩
                   id1 A b o  fmap arrow-g


--- Nat for Limit
-- 
--     Nat : K -> IndexFunctor
--

open Functor

IndexNat : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
      (comp : Complete A (TwoCat {c₁} {c₂} ) )
        →  {a b : Obj A}      (f g : Hom A  a b )
    (d : Obj A) → (h : Hom A d a ) →  A [ A [ f  o  h ] ≈ A [ g  o h ] ]   → 
        NTrans (TwoCat {c₁} {c₂}) A (K A (TwoCat {c₁} {c₂}) d) (IndexFunctor {c₁} {c₂} {ℓ} A a b f g)
IndexNat {c₁} {c₂} {ℓ} A comp {a} {b} f g d h fh=gh = record {
    TMap = λ x → nmap x d h ;
    isNTrans = record {
        commute = λ {x} {y} {f'} → commute1 {x} {y} {f'} d h fh=gh 
    }
 } where
         I = TwoCat {c₁} {c₂}
         Γ : Functor I A
         Γ = IndexFunctor {c₁} {c₂} {ℓ} A a b f g
         nmap :  (x : Obj I ) ( d : Obj (A)  ) (h : Hom A d a ) → Hom A (FObj (K A I d) x) (FObj Γ x)
         nmap t0 d h = h
         nmap t1 d h = A [ f o  h ] 
         commute1 : {x y : Obj I}  {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) →  A [ A [ f  o  h ] ≈ A [ g  o h ] ]
                 → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A I d) f' ] ]
         commute1  {t0} {t1} {arrow-f}  d h fh=gh =  let open  ≈-Reasoning A in begin
                    f o h
                ≈↑⟨ idR ⟩
                    (f o h ) o id1 A d

         commute1  {t0} {t1} {arrow-g}  d h fh=gh =  let open  ≈-Reasoning A in begin
                    g o h
                ≈↑⟨ fh=gh ⟩
                    f o h
                ≈↑⟨ idR ⟩
                    (f o h ) o id1 A d

         commute1  {t0} {t0} {id-t0}  d h fh=gh =   let open  ≈-Reasoning A in begin
                    id1 A a o h
                ≈⟨ idL ⟩
                    h
                ≈↑⟨ idR ⟩
                    h o id1 A d

         commute1  {t1} {t1} {id-t1}  d h fh=gh =   let open  ≈-Reasoning A in begin
                    id1 A b o  ( f o  h  )
                ≈⟨ idL ⟩
                     f o  h
                ≈↑⟨ idR ⟩
                    ( f o  h ) o id1 A d 



lim-to-equ :  {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) 
      (comp : Complete A (TwoCat {c₁} {c₂} ) )
        →  {a b : Obj A}  (f g : Hom A  a b ) {e : Hom A (limit-c comp (IndexFunctor {c₁} {c₂} {ℓ} A a b f g)) a }
        → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) 
        → IsEqualizer A e f g
lim-to-equ {c₁} {c₂} {ℓ} A comp {a} {b} f g {e} fe=ge =  record {
        fe=ge =  fe=ge
        ; k = λ {d} h fh=gh → k {d} h fh=gh
        ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh
        ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k'
     } where
         I = TwoCat {c₁} {c₂}
         Γ : Functor I A
         Γ = IndexFunctor {c₁} {c₂} {ℓ} A a b f g
         c = limit-c comp Γ
         k : {d : Obj A}  (h : Hom A d a) → A [ A [ f  o  h ] ≈ A [ g  o h ] ] → Hom A d c
         nat0 = IndexNat A comp f g 
         eqlim =  isLimit comp  Γ (nat0 c e fe=ge )
         k {d} h fh=gh  =  limit eqlim d (nat0 d h fh=gh )
         ek=h :  (d : Obj A ) (h : Hom A d a ) →  ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ] )  → A [ A [ e o k h fh=gh ] ≈ h ]
         ek=h d h fh=gh = let open  ≈-Reasoning A in  begin
                    e o k h fh=gh
                ≈⟨ t0f=t eqlim {d} {nat0 d h fh=gh} {t0}  ⟩
                    h

         uniq-nat :  {i : Obj I} →  (d : Obj A )  (h : Hom A d a ) ( k' : Hom A d c ) 
                       ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ]) → A [ A [ e o k' ] ≈ h ] →  
                       A [ A [ TMap (nat0 c e fe=ge ) i o k' ] ≈ TMap (nat0 d h fh=gh) i ]
         uniq-nat {t0} d h k' fh=gh ek'=h =  let open  ≈-Reasoning A in begin
                    TMap (nat0 c e fe=ge ) t0 o k'
                ≈⟨⟩
                    e o k'
                ≈⟨ ek'=h ⟩
                    h
                ≈⟨⟩
                     TMap (nat0 d h fh=gh) t0  

         uniq-nat {t1} d h k' fh=gh ek'=h =  let open  ≈-Reasoning A in begin
                    TMap (nat0 c e fe=ge ) t1 o k'
                ≈⟨⟩
                   (f o e ) o k'
                ≈↑⟨ assoc ⟩
                   f o ( e o k' )
                ≈⟨ cdr  ek'=h ⟩
                    f o h
                ≈⟨⟩
                    TMap (nat0 d h fh=gh) t1

         uniquness :  (d : Obj A ) (h : Hom A d a ) →  ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ] )  →
                 ( k' : Hom A d c )
                → A [ A [ e o k' ] ≈ h ] → A [ k h  fh=gh   ≈ k' ]
         uniquness d h fh=gh k' ek'=h =  let open  ≈-Reasoning A in  begin
                    k h fh=gh
                ≈⟨ limit-uniqueness eqlim k' ( λ{i} → uniq-nat {i} d h k' fh=gh ek'=h ) ⟩
                    k'